วันพฤหัสบดีที่ 29 ธันวาคม พ.ศ. 2559

ดาวเคราะห์ในระบบสุริยะจักรวาล

 เรื่องของจักรวาลและอวกาศเป็นเรื่องกว้างใหญ่และไกลตัว แต่ในยุคที่เทคโนโลยีก้าวล้ำไปไกลดังเช่นปัจจุบันนี้สามารถย่อโลกทั้งใบให้คนเรามาอยู่ใกล้กันได้แล้ว ดังนั้น เรื่องราวของนอกโลกก็เช่นกัน นักวิทยาศาสตร์ได้คิดค้นหาวิธีทางไปจักรวาลและอวกาศได้สำเร็จ ได้สำรวจและนำข้อมูลมาพัฒนาวิธีการเดินทางไปนอกโลกให้เป็นเรื่องไม่ยากเย็นอีกต่อไป แต่ก่อนจะไปถึงตรงนั้น เรื่องที่เราสามารถทำได้ตอนนี้คือ ค้นคว้าข้อมูลเกี่ยวกับระบบสุริยจักรวาลเบื้องต้นก่อนเช่นว่า ดาวเคราะห์ในระบบสุริยะมีกี่ดวง และมีความสัมพันธ์อย่างไรกับโลกที่เราอาศัยอยู่ ถ้าพร้อมแล้วไปติดตามรายละเอียดกันเลยค่ะ

          โดยในระบบสุริยจักรวาลของเรานั้น มีดาวฤกษ์ซึ่งมีแสงสว่างในตัวเองเพียงแค่ดวงเดียวซึ่งก็คือดวงอาทิตย์ ในขณะที่มีดาวที่ถูกจัดชั้นเป็นดาวเคราะห์อยู่ทั้งสิ้น 8 ดวง โดยแต่เดิมมี 9 ดวง เรียกว่า กลุ่มดาวนพเคราะห์–นพ แปลว่า เก้า แต่ล่าสุดมีการจัดอันดับใหม่ให้ดาวพลูโตถูกลดชั้นจากดาวเคราะห์มาเป็นดาวเคราะห์แคระ ซึ่งไม่นับรวมกับดวงจันทร์บริวาร ที่ไม่นับรวมเป็นดาวเคราะห์ 


ดาวเคราะห์ในระบบสุริยะ ทั้ง 8 ประกอบไปด้วย


ดาวพุธ (Mercury)

ดาวพุธ (Mercury)

          ดาวพุธ เป็นดาวเคราะห์ที่อยู่ใกล้ดวงอาทิตย์มากที่สุด ไม่มีดาวบริวาร และเป็นดาวเคราะห์ที่เล็กที่สุดในระบบสุริยะ และด้วยความที่มันเป็นดาวที่มีขนาดเล็ก (เส้นผ่านศูนย์กลางประมาณ 4,878 กิโลเมตร) จึงทำให้มันไม่สามารถสร้างสนามโน้มถ่วงที่มีพลังมากพอที่จะดึงดูดและกักเก็บ บรรยากาศได้ ดาวพุธจึงมีแรงโน้มถ่วงน้อยมาก และไม่มีบรรยากาศ ทำให้วัตถุอวกาศพุ่งชนได้ง่าย พื้นผิวดาวจึงขรุขระจากการพุ่งชนเหล่านั้น

          ดาวพุธใช้เวลาโคจรรอบดวงอาทิตย์รอบละ 88 วัน แต่กลับหมุนรอบตัวเอง 1 รอบ ใช้เวลาถึง 180 วันเลยทีเดียว นั่นหมายความว่า ดาวพุธจะมีด้านที่หันเข้าหาดวงอาทิตย์ยาวนานมาก เช่นเดียวกับด้านที่หันออกไปในทิศทางตรงกันข้ามกับดวงอาทิตย์  ดังนั้น เมื่อมีด้านที่ดาวพุธหันเข้าหาดวงอาทิตย์ยาวนาน ประกอบกับไม่มีชั้นบรรยากาศ จึงทำให้พื้นผิวดาวร้อนมาก ส่วนด้านที่หันทิศตรงข้ามดวงอาทิตย์ ก็เย็นมากเช่นกัน ดาวพุธจึงได้รับฉายาว่า เตาไฟแช่แข็ง 

          ทั้งนี้ ดาวพุธมักปรากฏใกล้ หรืออยู่ภายใต้แสงจ้าของดวงอาทิตย์ ทำให้สังเกตเห็นได้ยาก แต่ก็พอมองเห็นได้ด้วยตาเปล่าในเวลาพลบค่ำ



ดาวศุกร์ (Venus)
 
 ดาวศุกร์ (Venus)

          ดาวศุกร์ เป็นดาวเคราะห์เพื่อนบ้านที่อยู่ใกล้โลกมากที่สุด ไม่มีดวงจันทร์เป็นดาวบริวาร มีขนาดเล็กกว่าแต่ก็ใกล้เคียงกับโลกมาก จนได้ชื่อว่าเป็นฝาแฝดกับโลก เราสามารถสังเกตเห็นดาวศุกร์ได้ด้วยตาเปล่า โดยสามารถมองเห็นได้ทางขอบฟ้าด้านทิศตะวันตกในเวลาใกล้ค่ำ เราเรียกว่า ดาวประจำเมือง (Evening Star) ส่วนช่วงเช้ามืดปรากฏให้เห็นทางขอบฟ้าด้านทิศตะวันออกเรียกว่า ดาวรุ่ง (Morning Star) เรามักสังเกตเห็นดาวศุกร์มีแสงส่องสว่างมากเนื่องจาก ดาวศุกร์มีชั้นบรรยากาศที่ประกอบไปด้วยก๊าซคาร์บอนไดออกไซด์ มีผลทำให้อุณหภูมิพื้นผิวสูงขึ้น 

          ดาวศุกร์มีขนาดเส้นผ่านศูนย์กลาง 12,104 กิโลเมตร หมุนรอบตัวเอง 1 รอบใช้เวลา 224 วัน และมีทิศทางการหมุนที่ไม่เหมือนดาวเคราะห์ดวงอื่นในระบบสุริยะ คือในขณะที่ดาวเคราะห์ดวงอื่นหมุน ทวนเข็มนาฬิกา ดาวศุกร์กลับหมุนตามเข็มนาฬิกา ส่วนชั้นบรรยากาศบนดาวนั้น ประกอบด้วยคาร์บอนไดออกไซต์ถึง 97% ทำให้ดาวศุกร์ร้อนมาก อุณหภูมิสูงเฉียด 500 องศาเซลเซียส และสะท้อนแสงอาทิตย์ได้ดี จึงสุกสว่างเมื่อมองเห็น



โลก (Earth)

 โลก (Earth)

          โลก เป็นดาวเคราะห์ดวงเดียวที่มีสิ่งมีชีวิตอาศัยอยู่ เนื่องจากมีชั้นบรรยากาศและมีระยะห่าง จากดวงอาทิตย์ที่เหมาะสมต่อการเจริญเติบโตและการดำรงชีวิตของสิ่งมีชีวิต นักดาราศาสตร์อธิบายเกี่ยวกับการเกิดโลกว่า โลกเกิดจากการรวมตัวของกลุ่มก๊าซ และมีการเคลื่อนที่สลับซับซ้อนมาก แต่มีพื้นผิวเป็นหินเช่นเดียวกับ ดาวเคราะห์ชั้นในดวงอื่น ๆ ทั้งนี้ โลกมีดวงจันทร์เป็นบริวาร โคจรอยู่รอบโลกเพียงดวงเดียว มีขนาดเส้นผ่าศูนย์กลาง 3,476 กิโลเมตร หรือประมาณ 1 ใน 4 ของเส้นผ่าศูนย์กลางโลก และโคจรอยู่ห่างจากโลกโดยเฉลี่ยประมาณ 384,400 กิโลเมตร และโคจรรอบโลกในระยะเวลาประมาณ 29.5 วัน เป็นดวงจันทร์เป็นดาวดวงเดียวที่มนุษย์เดินทางไปสำรวจ โดยการนำตัวอย่างดินและหินจากดวงจันทร์กลับมาตรวจวิเคราะห์บนโลก



ดาวอังคาร (Mars)

 ดาวอังคาร (Mars)

          ดาวอังคาร มีขนาดเล็กกว่าโลก เส้นผ่านศูนย์กลางราว 6,794  กิโลเมตร พื้นผิวดาวอังคารมีปรากฏการณ์เมฆและพายุฝุ่นเสมอ เป็นที่น่าสนใจในการศึกษาของนักวิทยาศาสตร์เป็นอย่างมาก เนื่องจากมีลักษณะและองค์ประกอบ ที่ใกล้เคียงกับโลก เช่น มีระยะเวลาในการหมุนรอบตัวเอง 1 วัน เท่ากับ 24.6 ชั่วโมง และระยะเวลาใน 1 ปี เมื่อเทียบกับโลกเท่ากับ 1.9 มีการเอียงของแกน 25 องศา ดาวอังคารมีดวงจันทร์เป็นบริวาร 2 ดวง และมีอุณหภูมิพื้นผิวค่อนข้างเย็น อยู่ที่ประมาณ -65 องศาเซลเซียส

          ปัจจุบันนักวิทยาศาสตร์อยู่ระหว่างการศึกษาดาวอังคารอย่างละเอียด โดยการส่งยานคิวริออสซิตี้ขึ้นไปศึกษาสภาพบนดาว เพื่อวิเคราะห์ความเป็นไปได้ในการเป็นโลกใบที่สอง และนั่นอาจเป็นข่าวดีสำหรับมวลมนุษยชาติ



ดาวพฤหัสบดี (Jupiter) 

 ดาวพฤหัสบดี (Jupiter)

          ดาวพฤหัสบดี เป็นดาวเคราะห์ที่ใหญ่ที่สุดในระบบสุริยะจักรวาล มีขนาดเส้นผ่านศูนย์กลางยาวกว่าโลก 11 เท่า หมุนรอบตัวเอง 1 รอบใช้เวลา 9.8 ชั่วโมง ซึ่งเร็วที่สุดในบรรดาดาวเคราะห์ทั้งหลาย และโคจรรอบดวงอาทิตย์ 1 รอบ ใช้เวลา 12 ปี นักดาราศาสตร์อธิบายว่า ดาวพฤหัสเป็นกลุ่มก้อนก๊าซหรือของเหลวขนาดใหญ่ ที่ไม่มีส่วนที่เป็นของแข็งเหมือนโลก และเป็นดาวเคราะห์ที่มีดาวบริวารมากถึง 67 ดวง



ดาวเสาร์ (Saturn)
 
 ดาวเสาร์ (Saturn)

          ดาวเสาร์ เป็นดาวเคราะห์ที่เราสามารถมองเห็นได้ด้วยตาเปล่า เป็นดาวที่ประกอบไปด้วยก๊าซและ ของเหลวสีค่อนข้างเหลือง หมุนรอบตัวเอง 1 รอบใช้เวลา 10.2 ชั่วโมง และโคจรรอบดวงอาทิตย์ 1 รอบใช้เวลา 29 ปี ลักษณะเด่นของดาวเสาร์ คือ มีวงแหวนล้อมรอบ ซึ่งวงแหวนดังกล่าวเป็นอนุภาคเล็ก ๆ หลายชนิดรวมกัน และดาวเสาร์มีวงแหวนถึง 3 ชั้น นอกจากนี้ ดาวเสาร์ยังมีดาวบริวาร 62 ดวง หนึ่งในนั้นคือดวงจันทร์ไททัน (Titan) ซึ่งถือว่าเป็นดวงจันทร์ที่แปลกที่สุดในระบบสุริยะจักรวาล เพราะเป็นดวงจันทร์ดวงเดียวในระบบสุริยะที่มีบรรยากาศ และนักวิทยาศาสตร์วิเคราะห์ดวงจันทร์ดวงนี้มีสภาพเหมือนโลกยุคแรก ๆ หากดวงอาทิตย์ร้อนขึ้นเมื่อไร น้ำแข็งบนดวงจันทร์จะละลาย และมีวิวัฒนาการคล้ายกันกับโลกเลยทีเดียว



ดาวยูเรนัส (Uranus) 

 ดาวยูเรนัส (Uranus)

          ดาวยูเรนัส หรือดาวมฤตยู เป็นดาวเคราะห์แก๊สขนาดใหญ่ มีดวงจันทร์บริวาร 27 ดวง หมุนรอบตัวเอง 1 รอบ ใช้เวลา 16.8 ชั่วโมง และโคจรรอบดวงอาทิตย์ 1 รอบ ใช้เวลานานถึง 84 ปี ดาวยูเรนัสประกอบด้วยก๊าซและของเหลว เช่นเดียวกับดาวพฤหัสบดี และดาวเสาร์ทั้งนี้ ดาวยูเรนัสเป็นดาวเคราะห์ใหญ่เป็น ที่ 3 รองจากดาวพฤหัสบดี และดาวเสาร์ โคจรห่างจากดวงอาทิตย์โดยเฉลี่ย 2,871 ล้านกิโลเมตร ทำให้มองเห็นด้วยตาเปล่าได้ยาก แต่เมื่อใช้กล้องโทรทัศน์ และรู้ตำแหน่งแน่ชัด ก็จะสามารถเห็นได้ในคืนฟ้าใสกระจ่าง



 ดาวเนปจูน (Neptune)

 ดาวเนปจูน (Neptune)

          ดาวเนปจูน หรือดาวเกตุ เป็นดาวเคราะห์ขนาดใหญ่เป็นที่ 4 ในระบบสุริยะ มีเส้นผ่านศูนย์กลางราว 50,000 กิโลเมตร จุโลกได้ถึง 60 ดวง ระยะห่างเฉลี่ยจากดวงอาทิตย์ 4,504 ล้านกิโลเมตร  หมุนรอบตัวเองครบรอบในเวลา 16 ชั่วโมงอยู่ไกลจากโลกมากจนไม่สามารถมองเห็นได้ด้วยตาเปล่า ต้องใช้กล้องโทรทรรศน์ขนาดใหญ่เท่านั้นจึงจะเห็นเป็นจุดริบหรี่ได้ สิ่งที่มนุษย์รู้เกี่ยวกับดาวเนปจูน ในทุกวันนี้ จึงเป็นข้อมูลที่ได้มาจากยาน วอยเอเจอร์ 2 ซึ่งโคจรสำรวจดาวเนปจูน ระยะใกล้ เมื่อ พ.ศ. 2532
ที่มาจาก:http://hilight.kapook.com/view/84529

วันจันทร์ที่ 12 ธันวาคม พ.ศ. 2559

ระบบสุริยะและลักษณะของดาว

ระบบสุริยะและลักษณะของดาว
ระบบสุริยะ

ระบบสุริยะ คือ ระบบที่มี ดวงอาทิตย์ (Sun) เป็นศูนย์กลาง และมีบริวาร คือ ดาวเคราะห์ 8 ดวง (ในอดีตมีการนับดาวเคราะห์ที่โคจรรอบดวงอาทิตย์ทั้งหมด 9 ดวง แต่มาในปี 2549 มีการตัดดาวพลูโตออกไปจากระบบ อ่านเพิ่มเติมในเรื่องดาวพลูโตด้านล่าง)

ถ้าให้ระยะทางจากโลกถึงดวงอาทิตย์เป็นเกณฑ์ ดาวพุธและดาวศุกร์จัดเป็นดาวเคราะห์วงใน เพราะอยู่ห่างจากดวงอาทิตย์น้อยกว่าโลก จึงมีวงโคจรสั้นกว่า ส่วนดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน จัดเป็นดาวเคราะห์วงนอก เพราะอยู่ห่างจากดวงอาทิตย์มากกว่าโลก จึงมีวงโคจรยาวกว่าโลก

นอกจากนี้ ในระบบสุริยะยังประกอบด้วย
ดวงจันทร์บริวารดาวเคราะห์ (Moon) ดาวเคราะห์แคระ (Dwarf planet) ดาวเคราะห์น้อย(Minor Planet หรือ Asteroid) และดาวหาง (Comets) โดยบริวารทั้งหมด โคจรรอบดวงอาทิตย์ ส่วนดาวตกหรือผีพุ่งใต้ และอุกกาบาตจะเกิดขึ้นในบรรยากาศของโลก

 
 
 
ระบบสุริยะเมื่อครั้งที่ยังนับดาวพลูโตเป็นดาวเคราะห์ดวงที่ 9
 
 
 
 
ระบบสุริยะจักรวาลหลังจากที่มีการปลดดาวพลูโตออก

จักรวาล

หมายถึง ห้วงอวกาศที่บรรจุไว้ด้วยดวงดาวน้อยใหญ่ต่างๆ จำนวนมหาศาล ระหว่างดวงดาวก็มีก๊าซและฝุ่นผงเกาะกลุ่มกันบ้าง กระจายกันอยู่บ้าง บรรดาดวงดาวในจักรวาล จะไม่กระจายกันอยู่อย่างสม่ำเสมอ แต่จะร่วมกันอยู่เป็นกลุ่มๆ เรียกว่า
กาแล็กซี (Galaxy) ดวงดาวทั้งหมดที่เรามองเห็นในท้องฟ้าล้วนแต่อยู่ในกาแล็กซีเดียวกัน มีชื่อเรียกว่า
กาแล็กซีทางช้างเผือก
 
ดาวฤกษ์และดาวเคราะห์
·         ดาวฤกษ์ คือ ดาวที่มีแสงสว่างในตัวเอง

ดวงอาทิตย์ (Sun) เป็นดาวฤกษ์ที่มีขนาดใหญ่ที่สุดในระบบสุริยะ มีขนาดใหญ่กว่าโลกที่เราอาศัยอยู่ถึง 108 เท่า ดวงอาทิตย์มีพลังงานดึงดูดซึ่งกันและกันกับดาวเคราะห์ทั้ง 8 ดวง
ชนิดของดาวฤกษ์ตามลักษณะที่ศึกษา
 
·         ดาวเคราะห์ หมายถึง วัตถุท้องฟ้าที่โคจรรอบดาวฤกษ์ (ในที่นี้หมายถึงดวงอาทิตย์) โดยที่ตัวมันเองไม่เป็นทั้งดาวฤกษ์และดวงจันทร์บริวารของดาวเคราะห์ดวงอื่น เป็นดาวที่มีมวลมากพอที่จะมีแรงโน้มถ่วงดึงดูดตัวเองให้อยู่ในสภาวะสมดุลอุทกสถิต (hydrostatic balance) หรือรูปร่างใกล้เคียงกับทรงกลม ต้องไม่มีวงโคจรซ้อนทับหรือใกล้เคียงกับวัตถุอื่น นอกจากนี้ ดาวเคราะห์ยังเป็นดาวที่ไม่มีแสงสว่างในตัวเอง แต่สะท้อนพระอาทิตย์ส่องมายังตาเรา ดาวเคราะห์ที่เราสามารถมองเห็นด้วยตาเปล่า มี 5 ดวง คือ ดาวพุธ ดาวศุกร์ ดาวอังคาร ดาวพฤหัสบดี ดาวเสาร์
 
บริวารของดวงอาทิตย์

บริวารของดวงอาทิตย์จะโคจรอยู่รอบดวงอาทิตย์ ได้แก่ ดาวเคราะห์ 8 ดวง ดวงจันทร์ที่เป็นบริวารดาวเคราะห์ ดาวเคราะห์แคระ ดาวเคราะห์น้อย ดาวหาง และวัตถุขนาดเล็กอื่นๆ
1. ดาวเคราะห์ที่เป็นบริวารของดวงอาทิตย์

ระบบของดวงดาวที่ประกอบด้วย ดวงอาทิตย์เป็นศูนย์กลาง และมีดาวเคราะห์เป็นบริวาร 8 ดวง ซึ่งดาวเคราะห์ทั้ง 8 ดวง เรียงลำดับจากดวงที่ใกล้ดวงอาทิตย์มากที่สุด ไปหาดวงที่อยู่ไกลดวงอาทิตย์มากที่สุด ดังนี้ ดาวพุธ, ดาวศุกร์, โลก, ดาวอังคาร, ดาวพฤหัสบดี, ดาวเสาร์, ดาวยูเรนัส, ดาวเนปจูน

แต่เดิมระบบสุริยะมีการนับดาวพลูโตเป็นดาวเคราะห์ดวงที่ 9 ที่อยู่ไกลจากดวงอาทิตย์มากที่สุด ไม่สามารถมองเห็นได้ด้วยตาเปล่า จนกระทั่งมีการค้นพบหลักฐานทางวิทยาศาสตร์ใหม่ว่า ดาวพลูโตได้ถูกถอดออกจากออกจากหมู่ "ดาวเคราะห์ชั้นเอก" แห่งระบบสุริยะ หลังจากอยู่ในระบบมานานถึง 76 ปี โดยถูกจัดชั้นใหม่ให้เป็น "ดาวเคราะห์แคระ" เพราะดาวพลูโตแตกต่างจากดาวเคราะห์อีก 8 ดวงที่อยู่ในระบบมาก ไม่ว่าจะเป็นระยะทางที่อยู่ไกลจากดวงอาทิตย์และมีขนาดเล็กกว่าดาวเคราะห์อีก 8 ดวง และดาวพลูโตไม่สามารถควบคุมแรงดึงดูดและวงโคจรของสิ่งต่างๆ ที่อยู่นอกระบบสุริยะ
 
2. ดวงจันทร์

ดวงจันทร์ที่เป็นบริวารของโลก อยู่ห่างออกไป 238,900 ไมล์ มีขนาดเส้นผ่าศูนย์กลาง 2,160 ไมล์ หมุนรอบตัวเองและหมุนรอบโลกในอัตราเร็วและเวลาเกือบเท่ากัน ด้วยเหตุนี้เองคนบนโลกจึงเห็นผิวพื้นของดวงจันทร์เพียงด้านเดียวเสมอ

ดวงจันทร์เป็นดาวเคราะห์ที่ไม่มีแสงสว่างในตัวเอง และไม่มีอากาศห่อหุ้มอยู่เลย ดังนั้น ในเวลากลางวันด้านที่ได้รับแสงสว่างจากดวงอาทิตย์จะมีความร้อนมาก ขณะที่ด้านตรงข้ามกับดวงอาทิตย์จะไม่ได้รับแสงสว่าง จึงมีอุณหภูมิต่ำกว่าจุดเยือกแข็ง จึงทำให้สิ่งมีชีวิตอยู่บนดวงจันทร์ไม่ได้

ดวงจันทร์มีการหมุนรอบตัวเองและหมุนรอบโลกในอัตราเร็วและเวลาเกือบเท่ากัน คือ 27 วัน 7 ชม. 43 นาที จึงทำให้คนบนโลกมองเห็นดวงจันทร์ด้านเดียวเสมอ อย่างไรก็ตาม แสงสว่างที่ดวงจันทร์สาดส่องมายังผิวโลกเป็นแสงสะท้อนมาจากดวงอาทิตย์อีกต่อหนึ่ง พื้นผิวของดวงจันทร์ถ้าดูด้วยกล้องโทรทรรศน์จะพบว่า ไม่เรียบ เป็นผิวขรุขระ เต็มไปด้วยภูเขาสูงและหุบเหวลึก ซึ่งเป็นลักษณะของภูเขาไฟที่ดับแล้วจำนวนนับไม่ถ้วนของดวงจันทร์ นอกจากนี้ตามผิวพื้นราบยังปรากฏเป็นหลุมลึกขนาดใหญ่มหึมาอีกมากมาย ซึ่งเข้าใจกันว่าเกิดจากการกระแทกอย่างแรงของสะเก็ดดาวนอกเวหาที่พุ่งเข้าชนดวงจันทร์

การเคลื่อนที่ของดวงจันทร์นอกโลกเป็นไปอย่างสม่ำเสมอ มนุษย์เราจึงใช้ดวงจันทร์เป็นเครื่องวัดเวลาในการทำปฏิทินทางจันทรคติ

ดวงจันทร์ที่เป็นบริวารของโลกเมื่อมีการเคลื่อนที่สำคัญ 3 ประการคือ
1.   หมุนรอบตัวเองใช้เวลาประมาณ 27 วัน 7 ชม. 43 นาที
2.   โคจรรอบโลกใช้เวลาประมาณ 29.5 วัน (ราวๆ 1 เดือน) เท่ากัน
3.   โคจรรอบดวงอาทิตย์ใช้เวลาประมาณ 12 เดือน
  ดวงจันทร์อยู่ใกล้โลกมากเมื่อเทียบกับดวงอาทิตย์ (อยู่ห่างเพียงประมาณ 30 เท่าของเส้นผ่านศูนย์กลางของโลกเท่านั้น) จึงเป็นสาเหตุสำคัญที่ทำให้เกิดขึ้นน้ำขึ้นน้ำลงบนโลก การเคลื่อนที่ของดวงจันทร์รอบโลกเป็นไปอย่างสม่ำเสมอ มนุษย์จึงใช้เป็นข้อมูลในการจัดทำปฏิทินทางจันทรคติ การหมุนรอบตัวเองในขณะโคจรรอบโลกและดวงอาทิตย์ จะทำให้มีปรากฏการณ์กลางวันกลางคืนเกิดขึ้นบนดวงจันทร์ได้ด้วย

นอกจากนี้ ทั้งโลกและดวงจันทร์ต่างก็มีเงาที่ทอดยาวไปในอวกาศ จนเกิดปรากฏการณ์ธรรมชาติ เมื่อดวงจันทร์ทอดเงามาที่โลกมาบังแสงจากดวงอาทิตย์ที่ส่องลงมาพื้นโลก ทำให้พื้นที่บนโลกบริเวณใต้เงาของดวงจันทร์มืดลง เรียกว่า การเกิดสุริยุปราคา และเมื่อเงาของโลกทอดไปยังดวงจันทร์จนมืดสนิทมองไม่เห็นดวงจันทร์ เรียกว่า การเกิดจันทรุปราคา


3. ดาวเคราะห์แคระ

เป็นเทหวัตถุภายในระบบสุริยะที่มีคุณสมบัติ 4 ประการ
·         เป็นวัตถุที่มีวงโคจรรอบดวงอาทิตย์
·         มีมวลมากพอที่จะทำให้มีแรงดึงดูดจนตัววัตถุมีขนาดเกือบเป็นทรงกลมสมบูรณ์
·         ไม่เป็นบริวารของดาวเคราะห์ดวงอื่นหรือเป็นบริวารของวัตถุท้องฟ้าอื่นใด (ไม่ใช่ดวงจันทร์บริวาร)
·         ไม่สามารถควบคุมแรงดึงดูดและวงโคจรของสิ่งต่างๆ ที่อยู่รอบวงโคจรของมัน
  ปัจจุบัน วัตถุท้องฟ้าที่ได้รับการรับรองว่า เป็นดาวเคราะห์แคระ มีด้วยกันทั้งหมด 5 ดวง ได้แก่ พลูโต (Pluto) ซีเรส (Ceres) อีริส (Eris) เฮาเมอา (Haumea) มาคีมาคี (Makemake)
4. ดาวเคราะห์น้อย

เป็นวัตถุขนาดเล็กๆ จำนวนมากในระบบสุริยะ มีขนาดเท่าเม็ดฝุ่นจนถึงมีขนาดใหญ่ที่มีเส้นผ่านศูนย์กลางเกือบพันกิโลเมตร ประกอบด้วย หินและโลหะ สันนิษฐานว่า เกิดจากการแตกกระจายของดาวเคราะห์ดวงหนึ่งในอดีต

ดาวเคราะห์น้อยเป็นบริวารของดวงอาทิตย์และโคจรรอบดวงอาทิตย์เช่นเดียวกับดาวดวงอื่นๆ โดยเกาะกันเป็นวงแหวนอยู่ระหว่างดาวอังคารและดาวพฤหัสบดี อยู่ห่างจากโลกประมาณ 150 – 354 กิโลเมตร

ดาวเคราะห์น้อยเราสามารถจำแนกได้เป็น 2 ประเภทคือ
·         ดาวเคราะห์น้อยขนาดใหญ่ เช่น ซีเรส เวสตา พัลลาส มีวงโคจรอยู่ในแถบเข็มขัดดาวเคราะห์น้อย ระหว่างวงโคจรของดาวอังคารและดาวพฤหัสบดี ดาวเคราะห์น้อยดวงที่ใหญ่ที่สุดคือ ซีเรส ปัจจุบันซีรีสถูกเลื่อนสถานะเป็นดาวเคราะห์แคระแล้ว
·         ดาวเคราะห์แคระที่เป็นวัตถุไคเปอร์ซึ่งถูกเพิ่งค้นพบใหม่ มีขนาดใหญ่กว่า และมีวงโคจรรูปรีมาก มีวงโคจรถัดจากดาวเนปจูนและดาวพลูโตออกไป
 
5. ดาวหาง (Comets) 
  เป็นวัตถุท้องฟ้าที่ไม่มีแสงในตัวเอง เป็นส่วนหนึ่งของระบบสุริยะโดยเคลื่อนที่รอบดวงอาทิตย์เป็นวงรีมาก ขณะที่อยู่ไกลจากดวงอาทิตย์จะไม่มีหางและหัว แต่เมื่อเคลื่อนที่เข้ามาใกล้ดวงอาทิตย์จึงจะมีหางและหัว หางจะยาวมากที่สุดเมื่ออยู่ใกล้ดวงอาทิตย์ที่สุด หางของดาวหางจะหันออกไปในทิศทางตรงข้ามกับดวงอาทิตย์เสมอ สิ่งที่ทำให้ดาวหางปรากฏมีหางขึ้นมากเพราะพลังงานจากดวงอาทิตย์ทั้งในรูปความร้อน ลมสุริยะ (อนุภาคที่มีประจุไฟฟ้าที่กระเด็นออกไปจากดวงอาทิตย์) และรังสี ซึ่งทำให้น้ำแข็งสกปรก ที่เป็นใจกลางหัวของดาวหางระเหิดกลายเป็นไอ พลังงานที่เป็นลมสุริยะ และรังสีจะผลักดันให้หางพุ่งออกไปจากดวงอาทิตย์ หางจะมีทั้งที่เป็นฝุ่น เป็นก๊าซ และโมเลกุลที่มีประจุไฟฟ้า

อุกกาบาต (Meteors) เป็นวัตถุนอกโลกที่ถูกเผาไหม้ไม่หมดขณะผ่านบรรยากาศโลก และเหลือตกลงมาบนพื้นผิวโลก เรียกว่า
อุกกาบาต แต่ถ้าถูกเผาไหม้หมดมองเห็นเป็นแสงวาบ เรียกว่า ดาวตก หรือ ผีพุ่งใต้ ถ้าอุกกาบาตโตมากจะทำให้เกิดหลุมอุกกาบาตได้ บนดวงจันทร์มีหลุมอุกกาบาตเป็นจำนวนมากเพราะดวงจันทร์ไม่มีบรรยากาศ ไม่มีลม ไม่มีฝนที่จะทำให้หลุมอุกกาบาตที่มีอยู่แล้วพังสลายไป ดาวพุธและดาวอังคารก็มีหลุมอุกกาบาตเช่นเดียวกัน

วิดีโอ YouTube

ที่มาhttps://sites.google.com/site/homeaoy/bth-thi-1
 

ดาราศาสตร์

ดาราศาสตร์ คือวิชาวิทยาศาสตร์ที่ศึกษาวัตถุท้องฟ้า (อาทิ ดาวฤกษ์ ดาวเคราะห์ ดาวหาง และดาราจักร) รวมทั้งปรากฏการณ์ทางธรรมชาติต่าง ๆ ที่เกิดขึ้นจากนอกชั้นบรรยากาศของโลก โดยศึกษาเกี่ยวกับวิวัฒนาการ ลักษณะทางกายภาพ ทางเคมี ทางอุตุนิยมวิทยา และการเคลื่อนที่ของวัตถุท้องฟ้า ตลอดจนถึงการกำเนิดและวิวัฒนาการของเอกภพ[1][2][3]
ดาราศาสตร์เป็นหนึ่งในสาขาของวิทยาศาสตร์ที่เก่าแก่ที่สุด นักดาราศาสตร์ในวัฒนธรรมโบราณสังเกตการณ์ดวงดาวบนท้องฟ้าในเวลากลางคืน และวัตถุทางดาราศาสตร์หลายอย่างก็ได้ถูกค้นพบเรื่อยมาตามยุคสมัย อย่างไรก็ตาม กล้องโทรทรรศน์เป็นสิ่งประดิษฐ์ที่จำเป็นก่อนที่จะมีการพัฒนามาเป็นวิทยาศาสตร์สมัยใหม่ ตั้งแต่อดีตกาล ดาราศาสตร์ประกอบไปด้วยสาขาที่หลากหลายเช่น การวัดตำแหน่งดาว การเดินเรือดาราศาสตร์ ดาราศาสตร์เชิงสังเกตการณ์ การสร้างปฏิทิน และรวมทั้งโหราศาสตร์ แต่ดาราศาสตร์ทุกวันนี้ถูกจัดว่ามีความหมายเหมือนกับฟิสิกส์ดาราศาสตร์ ตั้งแต่คริสต์ศตวรรษที่ 20 เป็นต้นมา ดาราศาสตร์ได้แบ่งออกเป็นสองสาขาได้แก่ ดาราศาสตร์เชิงสังเกตการณ์ และดาราศาสตร์เชิงทฤษฎี ดาราศาสตร์เชิงสังเกตการณ์จะให้ความสำคัญไปที่การเก็บและการวิเคราะห์ข้อมูล โดยการใช้ความรู้ทางกายภาพเบื้องต้นเป็นหลัก ส่วนดาราศาสตร์เชิงทฤษฎีให้ความสำคัญไปที่การพัฒนาคอมพิวเตอร์หรือแบบจำลองเชิงวิเคราะห์ เพื่ออธิบายวัตถุท้องฟ้าและปรากฏการณ์ต่าง ๆ ทั้งสองสาขานี้เป็นองค์ประกอบซึ่งกันและกัน กล่าวคือ ดาราศาสตร์เชิงทฤษฎีใช้อธิบายผลจากการสังเกตการณ์ และดาราศาสตร์เชิงสังเกตการณ์ใช้ในการรับรองผลจากทางทฤษฎี
การค้นพบสิ่งต่าง ๆ ในเรื่องของดาราศาสตร์ที่เผยแพร่โดยนักดาราศาสตร์สมัครเล่นนั้นมีความสำคัญมาก และดาราศาสตร์ก็เป็นหนึ่งในวิทยาศาสตร์จำนวนน้อยสาขาที่นักดาราศาสตร์สมัครเล่นยังคงมีบทบาท โดยเฉพาะการค้นพบหรือการสังเกตการณ์ปรากฏการณ์ที่เกิดขึ้นเพียงชั่วคราว
ไม่ควรสับสนระหว่างดาราศาสตร์โบราณกับโหราศาสตร์ ซึ่งเป็นความเชื่อที่นำเอาเหตุการณ์และพฤติกรรมของมนุษย์ไปเกี่ยวโยงกับตำแหน่งของวัตถุท้องฟ้า แม้ว่าทั้งดาราศาสตร์และโหราศาสตร์เกิดมาจากจุดร่วมเดียวกัน และมีส่วนหนึ่งของวิธีการศึกษาที่เหมือนกัน เช่นการบันทึกตำแหน่งดาว (ephemeris) แต่ทั้งสองอย่างก็แตกต่างกัน [4]
ในปี ค.ศ. 2009 นี้เป็นการครบรอบ 400 ปีของการพิสูจน์แนวคิดเรื่องดวงอาทิตย์เป็นศูนย์กลางของจักรวาล ของ นิโคเลาส์ โคเปอร์นิคัส อันเป็นการพลิกคติและโค่นความเชื่อเก่าแก่เรื่องโลกเป็นศูนย์กลางของจักรวาลของอริสโตเติลที่มีมาเนิ่นนาน โดยการใช้กล้องโทรทรรศน์สังเกตการณ์ทางดาราศาสตร์ของกาลิเลโอซึ่งช่วยยืนยันแนวคิดของโคเปอร์นิคัส องค์การสหประชาชาติจึงได้ประกาศให้ปีนี้เป็นปีดาราศาสตร์สากล มีเป้าหมายเพื่อให้สาธารณชนได้มีส่วนร่วมและทำความเข้าใจกับดาราศาสตร์มากยิ่งขึ้น

เนื้อหา

 [ซ่อน

ประวัติ

ดาราศาสตร์นับเป็นวิชาที่เก่าแก่ที่สุดวิชาหนึ่ง และเป็นวิชาที่น่าสนใจมากอีกด้วย เพราะนับตั้งแต่มีมนุษย์อยู่บนโลก เขาย่อมได้เห็นได้สัมผัสกับสิ่งแวดล้อมตามธรรมชาติเสมอมา แล้วก็เริ่มสังเกตจดจำและเล่าต่อ ๆ กัน เช่น เมื่อมองออกไปรอบตัวเห็นพื้นดินราบ ดูออกไปไกล ๆ ก็ยังเห็นว่าพื้นผิวของโลกแบน จึงคิดกันว่าโลกแบน มองฟ้าเห็นโค้งคล้ายฝาชีหรือโดม มีดาวให้เห็นเคลื่อนข้ามศีรษะไปทุกคืน กลางวันมีลูกกลมแสงจ้า ให้แสง สี ความร้อน ซึ่งก็คือ ดวงอาทิตย์ ที่เคลื่อนขึ้นมาแล้วก็ลับขอบฟ้าไป ดวงอาทิตย์จึงมีความสำคัญกับเขามาก
การศึกษาดาราศาสตร์ในยุคแรก ๆ เป็นการเฝ้าดูและคาดเดาการเคลื่อนที่ของวัตถุท้องฟ้าเหล่านั้นที่สามารถมองเห็นได้ด้วยตาเปล่า ก่อนยุคสมัยที่กล้องโทรทรรศน์จะถูกประดิษฐ์ขึ้น มีสิ่งปลูกสร้างโบราณหลายแห่งที่เชื่อว่าเป็นสถานที่สำหรับการเฝ้าศึกษาทางดาราศาสตร์ เช่น สโตนเฮนจ์ นอกจากนี้การเฝ้าศึกษาดวงดาวยังมีความสำคัญต่อพิธีกรรม ความเชื่อ และเป็นการบ่งบอกถึงการเปลี่ยนฤดูกาล ซึ่งเป็นปัจจัยสำคัญต่อสังคมเกษตรกรรมการเพาะปลูก รวมถึงเป็นเครื่องบ่งชี้ถึงระยะเวลา วัน เดือน ปี[5]
เมื่อสังคมมีวิวัฒนาการขึ้นในดินแดนต่าง ๆ การสังเกตการณ์ทางดาราศาสตร์ก็ซับซ้อนมากขึ้น โดยเฉพาะอย่างยิ่งใน เมโสโปเตเมีย กรีก จีน อียิปต์ อินเดีย และ มายา เริ่มมีแนวคิดเกี่ยวกับความสัมพันธ์ของธรรมชาติแห่งจักรวาลกว้างขวางขึ้น ผลการศึกษาดาราศาสตร์ในยุคแรก ๆ จะเป็นการบันทึกแผนที่ตำแหน่งของดวงดาวต่าง ๆ อันเป็นศาสตร์ที่ปัจจุบันเรียกกันว่า การวัดตำแหน่งดาว (astrometry) ผลจากการเฝ้าสังเกตการณ์ทำให้แนวคิดเกี่ยวกับการเคลื่อนที่ของดวงดาวต่าง ๆ เริ่มก่อตัวเป็นรูปร่างขึ้น ธรรมชาติการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และโลก นำไปสู่แนวคิดเชิงปรัชญาเพื่อพยายามอธิบายปรากฏการณ์เหล่านั้น ความเชื่อดั้งเดิมคือโลกเป็นศูนย์กลางของจักรวาล โดยมีดวงอาทิตย์ ดวงจันทร์ และดวงดาวต่าง ๆ เคลื่อนที่ไปโดยรอบ แนวคิดนี้เรียกว่า แบบจำลองแบบโลกเป็นศูนย์กลางจักรวาล (geocentric model)
มีการค้นพบทางดาราศาสตร์ที่สำคัญไม่มากนักก่อนการประดิษฐ์กล้องโทรทรรศน์ ตัวอย่างการค้นพบเช่น ชาวจีนสามารถประเมินความเอียงของแกนโลกได้ประมาณหนึ่งพันปีก่อนคริสตกาล ชาวบาบิโลนค้นพบว่าปรากฏการณ์จันทรคราสจะเกิดขึ้นซ้ำเป็นช่วงเวลา เรียกว่า วงรอบซารอส[6] และช่วงสองร้อยปีก่อนคริสตกาล ฮิปปาร์คัส นักดาราศาสตร์ชาวกรีก สามารถคำนวณขนาดและระยะห่างของดวงจันทร์ได้[7]
ตลอดช่วงยุคกลาง การค้นพบทางดาราศาสตร์ในยุโรปกลางมีน้อยมากจนกระทั่งถึงคริสต์ศตวรรษที่ 13 แต่มีการค้นพบใหม่ ๆ มากมายในโลกอาหรับและภูมิภาคอื่นของโลก มีนักดาราศาสตร์ชาวอาหรับหลายคนที่มีชื่อเสียงและสร้างผลงานสำคัญแก่วิทยาการด้านนี้ เช่น Al-Battani และ Thebit รวมถึงคนอื่น ๆ ที่ค้นพบและตั้งชื่อให้แก่ดวงดาวด้วยภาษาอารบิก ชื่อดวงดาวเหล่านี้ยังคงมีที่ใช้อยู่จนถึงปัจจุบัน[8][9]

การปฏิวัติทางวิทยาศาสตร์

ภาพร่างการสังเกตการณ์ดวงจันทร์ของกาลิเลโอ ทำให้เห็นว่าพื้นผิวดวงจันทร์นั้นขรุขระ
ในยุคเรอเนซองส์ นิโคเลาส์ โคเปอร์นิคัส ได้นำเสนอแนวคิดแบบจำลองดวงอาทิตย์เป็นศูนย์กลาง ซึ่งถูกต่อต้านอย่างมากจากศาสนจักร ทว่าได้รับการยืนยันรับรองจากงานศึกษาของกาลิเลโอ กาลิเลอี และ โยฮันเนส เคปเลอร์ โดยที่กาลิเลโอได้ประดิษฐ์กล้องโทรทรรศน์หักเหแสงแบบใหม่ขึ้นในปี ค.ศ. 1609 ทำให้สามารถเฝ้าสังเกตดวงดาวและนำผลจากการสังเกตมาช่วยยืนยันแนวคิดนี้
เคปเลอร์ได้คิดค้นระบบแบบใหม่ขึ้นโดยปรับปรุงจากแบบจำลองเดิมของโคเปอร์นิคัส ทำให้รายละเอียดการโคจรต่าง ๆ ของดาวเคราะห์และดวงอาทิตย์ที่ศูนย์กลางสมบูรณ์ถูกต้องมากยิ่งขึ้น แต่เคปเลอร์ก็ไม่ประสบความสำเร็จในการนำเสนอทฤษฎีนี้เนื่องจากกฎหมายในยุคสมัยนั้น จนกระทั่งต่อมาถึงยุคสมัยของเซอร์ ไอแซค นิวตัน ผู้คิดค้นหลักกลศาสตร์ท้องฟ้าและกฎแรงโน้มถ่วงซึ่งสามารถอธิบายการเคลื่อนที่ของดาวเคราะห์ได้อย่างสมบูรณ์ นิวตันยังได้คิดค้นกล้องโทรทรรศน์แบบสะท้อนแสงขึ้นด้วย
การค้นพบใหม่ ๆ เกิดขึ้นเรื่อย ๆ พร้อมไปกับการพัฒนาขนาดและคุณภาพของกล้องโทรทรรศน์ที่ดียิ่งขึ้น มีการจัดทำรายชื่อดาวอย่างละเอียดเป็นครั้งแรกโดย ลาซายล์ ต่อมานักดาราศาสตร์ชื่อ วิลเลียม เฮอร์เชล ได้จัดทำรายการโดยละเอียดของเนบิวลาและกระจุกดาว ค.ศ. 1781 มีการค้นพบดาวยูเรนัส ซึ่งเป็นการค้นพบดาวเคราะห์ดวงใหม่เป็นครั้งแรก ค.ศ. 1838 มีการประกาศระยะทางระหว่างดาวเป็นครั้งแรกโดยฟรีดดริค เบสเซล หลังจากตรวจพบพารัลแลกซ์ของดาว 61 Cygni
ระหว่างคริสต์ศตวรรษที่ 19 ออยเลอร์ คลาเราต์ และดาเลมเบิร์ต ได้คิดค้นคณิตศาสตร์เกี่ยวกับปัญหาสามวัตถุ (three-body problem หรือ n-body problem) ทำให้การประมาณการเคลื่อนที่ของดวงจันทร์และดาวเคราะห์สามารถทำได้แม่นยำขึ้น งานชิ้นนี้ได้รับการปรับปรุงต่อมาโดย ลากรองจ์ และ ลาปลาส ทำให้สามารถประเมินมวลของดาวเคราะห์และดวงจันทร์ได้
การค้นพบสำคัญทางดาราศาสตร์ประสบความสำเร็จมากขึ้นเมื่อมีเทคโนโลยีใหม่ ๆ เช่น การถ่ายภาพ และสเปกโตรสโคป เราทราบว่าดวงดาวต่าง ๆ ที่แท้เป็นดาวฤกษ์ที่มีลักษณะคล้ายคลึงกับดวงอาทิตย์ของเรานั่นเอง แต่มีอุณหภูมิ มวล และขนาดที่แตกต่างกันไป[10]
การค้นพบว่า ดาราจักรของเราหรือดาราจักรทางช้างเผือกนี้ เป็นกลุ่มของดาวฤกษ์ที่รวมตัวอยู่ด้วยกัน เพิ่งเกิดขึ้นในคริสต์ศตวรรษที่ 20 นี้เอง พร้อมกับการค้นพบการมีอยู่ของดาราจักรอื่น ๆ ต่อมาจึงมีการค้นพบว่า เอกภพกำลังขยายตัว โดยดาราจักรต่าง ๆ กำลังเคลื่อนที่ห่างออกจากเรา การศึกษาดาราศาสตร์ยุคใหม่ยังค้นพบวัตถุท้องฟ้าใหม่ ๆ อีกหลายชนิด เช่น เควซาร์ พัลซาร์ เบลซาร์ และดาราจักรวิทยุ ผลจากการค้นพบเหล่านี้นำไปสู่การพัฒนาทฤษฎีทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ของวัตถุเหล่านี้เปรียบเทียบกับวัตถุประหลาดอื่น ๆ เช่น หลุมดำ และดาวนิวตรอน ศาสตร์ทางด้านฟิสิกส์จักรวาลวิทยามีความก้าวหน้าอย่างมากตลอดคริสต์ศตวรรษที่ 20 แบบจำลองบิกแบงได้รับการสนับสนุนจากหลักฐานต่าง ๆ ที่ค้นพบโดยนักดาราศาสตร์และนักฟิสิกส์ เช่น การแผ่รังสีไมโครเวฟพื้นหลังของจักรวาล กฎของฮับเบิล และการที่มีธาตุต่าง ๆ มากมายอย่างไม่คาดคิดในจักรวาลภายนอก

ดาราศาสตร์เชิงสังเกตการณ์

กล้องโทรทรรศน์วิทยุจำนวนมากเรียงรายในลานกว้าง ที่รัฐนิวเม็กซิโก สหรัฐอเมริกา
ในทางดาราศาสตร์ สารสนเทศส่วนใหญ่ได้จากการตรวจหาและวิเคราะห์โฟตอนซึ่งเป็นการแผ่รังสีแม่เหล็กไฟฟ้า[11] แต่อาจได้จากข้อมูลที่มากับรังสีคอสมิก นิวตริโน ดาวตก และในอนาคตอันใกล้อาจได้จากคลื่นความโน้มถ่วง
การแบ่งหมวดของดาราศาสตร์เชิงสังเกตการณ์สามารถแบ่งได้ตามการสังเกตการณ์สเปกตรัมแม่เหล็กไฟฟ้าในย่านต่าง ๆ โดยการสังเกตการณ์บางย่านสเปกตรัมสามารถกระทำได้บนพื้นผิวโลก แต่บางย่านจะสามารถทำได้ในชั้นบรรยากาศสูงหรือในอวกาศเท่านั้น การสังเกตการณ์ดาราศาสตร์ในย่านสเปกตรัมต่าง ๆ แสดงดังรายละเอียดต่อไปนี้

ดาราศาสตร์วิทยุ

ดูบทความหลักที่: ดาราศาสตร์วิทยุ
ดาราศาสตร์วิทยุเป็นการตรวจหาการแผ่รังสีในความยาวคลื่นที่ยาวกว่า 1 มิลลิเมตร (ระดับมิลลิเมตรถึงเดคาเมตร) [12] เป็นการศึกษาดาราศาสตร์ที่แตกต่างจากการศึกษาดาราศาสตร์เชิงสังเกตการณ์รูปแบบอื่น ๆ เพราะเป็นการศึกษาคลื่นวิทยุซึ่งถือว่าเป็นคลื่นจริง ๆ มากกว่าเป็นการศึกษาอนุภาคโฟตอน จึงสามารถตรวจวัดได้ทั้งแอมปลิจูดและเฟสของคลื่นวิทยุซึ่งจะทำได้ยากกว่ากับคลื่นที่มีความยาวคลื่นต่ำกว่านี้[12]
คลื่นวิทยุที่แผ่จากวัตถุดาราศาสตร์จำนวนหนึ่งอาจอยู่ในรูปของการแผ่รังสีความร้อน โดยมากแล้วการแผ่คลื่นวิทยุที่ตรวจจับได้บนโลกมักอยู่ในรูปแบบของการแผ่รังสีซิงโครตรอน ซึ่งเกิดจากการที่อิเล็กตรอนเคลื่อนที่เป็นคาบรอบเส้นแรงสนามแม่เหล็ก[12] นอกจากนี้สเปกตรัมที่เกิดจากแก๊สระหว่างดาว โดยเฉพาะอย่างยิ่งเส้นสเปกตรัมของไฮโดรเจนที่ 21 เซนติเมตร จะสามารถสังเกตได้ในช่วงคลื่นวิทยุ[13][12]
วัตถุดาราศาสตร์ที่สามารถสังเกตได้ในช่วงคลื่นวิทยุมีมากมาย รวมไปถึงซูเปอร์โนวา แก๊สระหว่างดาว พัลซาร์ และนิวเคลียสดาราจักรกัมมันต์[13][12]

ดาราศาสตร์เชิงแสง

ดูบทความหลักที่: ดาราศาสตร์เชิงแสง
การสังเกตการณ์ดาราศาสตร์เชิงแสงเป็นการศึกษาดาราศาสตร์ที่เก่าแก่ที่สุด[14] คือการสังเกตการณ์ท้องฟ้าด้วยดวงตามนุษย์ โดยอาศัยเครื่องมือช่วยบ้างเช่น กล้องโทรทรรศน์ ภาพที่มองเห็นถูกบันทึกเอาไว้โดยการวาด จนกระทั่งช่วงปลายคริสต์ศตวรรษที่ 19 และตลอดคริสต์ศตวรรษที่ 20 จึงมีการบันทึกภาพสังเกตการณ์ด้วยเครื่องมือถ่ายภาพ ภาพสังเกตการณ์ยุคใหม่มักใช้อุปกรณ์ตรวจจับแบบดิจิตอล ที่นิยมอย่างมากคืออุปกรณ์จับภาพแบบซีซีดี แม้ว่าแสงที่ตามองเห็นจะมีความยาวคลื่นอยู่ระหว่าง 4000 Å ถึง 7000 Å (400-700 nm) [14] แต่อุปกรณ์ตรวจจับเหล่านี้ก็มักจะมีความสามารถสังเกตภาพที่มีการแผ่รังสีแบบใกล้อัลตราไวโอเลต และใกล้อินฟราเรดได้ด้วย

ดาราศาสตร์อินฟราเรด

ดูบทความหลักที่: ดาราศาสตร์อินฟราเรด
ดาราศาสตร์อินฟราเรด เป็นการตรวจหาและวิเคราะห์การแผ่รังสีในช่วงคลื่นอินฟราเรด (คือช่วงความยาวคลื่นที่ยาวกว่าแสงสีแดง) ยกเว้นในช่วงคลื่นที่ใกล้เคียงกับแสงที่ตามองเห็น การแผ่รังสีอินฟราเรดจะถูกชั้นบรรยากาศของโลกดูดซับไปมากแล้วชั้นบรรยากาศจะปลดปล่อยรังสีอินฟราเรดออกมาแทน ดังนั้นการสังเกตการณ์ในช่วงคลื่นอินฟราเรดจึงจำเป็นต้องทำที่ระดับบรรยากาศที่สูงและแห้ง หรือออกไปสังเกตการณ์ในอวกาศ การศึกษาดาราศาสตร์ในช่วงคลื่นอินฟราเรดมีประโยชน์มากในการศึกษาวัตถุที่เย็นเกินกว่าจะแผ่รังสีคลื่นแสงที่ตามองเห็นออกมาได้ เช่น ดาวเคราะห์ และแผ่นจานดาวฤกษ์ (circumstellar disk) ยิ่งคลื่นอินฟราเรดมีความยาวคลื่นมาก จะสามารถเดินทางผ่านกลุ่มเมฆฝุ่นได้ดีกว่าแสงที่ตามองเห็นมาก ทำให้เราสามารถเฝ้าสังเกตดาวฤกษ์เกิดใหม่ในเมฆโมเลกุลและในใจกลางของดาราจักรต่าง ๆ ได้[15] โมเลกุลบางชนิดปลดปล่อยคลื่นอินฟราเรดออกมาแรงมาก ซึ่งทำให้เราสามารถศึกษาลักษณะทางเคมีในอวกาศได้ เช่น การตรวจพบน้ำบนดาวหาง เป็นต้น[16]

ดาราศาสตร์พลังงานสูง[แก้]

ดาราศาสตร์รังสีอัลตราไวโอเลต

ดาราศาสตร์รังสีอัลตราไวโอเลตเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นสั้นกว่าแสงม่วง คือประมาณ 10-3200 Å (10-320 นาโนเมตร) [12] แสงที่ความยาวคลื่นนี้จะถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์จึงต้องกระทำที่ชั้นบรรยากาศรอบนอก หรือในห้วงอวกาศ การศึกษาดาราศาสตร์รังสีอัลตราไวโอเลตจะใช้ในการศึกษาการแผ่รังสีความร้อนและเส้นการกระจายตัวของสเปกตรัมจากดาวฤกษ์สีน้ำเงินร้อนจัด (ดาวโอบี) ที่ส่องสว่างมากในช่วงคลื่นนี้ รวมไปถึงดาวฤกษ์สีน้ำเงินในดาราจักรอื่นที่เป็นเป้าหมายสำคัญในการสำรวจระดับอัลตราไวโอเลต วัตถุอื่น ๆ ที่มีการศึกษาแสงอัลตราไวโอเลตได้แก่ เนบิวลาดาวเคราะห์ ซากซูเปอร์โนวา และนิวเคลียสดาราจักรกัมมันต์[12] อย่างไรก็ดี แสงอัลตราไวโอเลตจะถูกฝุ่นระหว่างดวงดาวดูดซับหายไปได้ง่าย ดังนั้นการตรวจวัดแสงอัลตราไวโอเลตจากวัตถุจึงต้องนำมาปรับปรุงค่าให้ถูกต้องด้วย[12]

ดาราศาสตร์รังสีเอ็กซ์

ดูบทความหลักที่: ดาราศาสตร์รังสีเอ็กซ์
ดาราศาสตร์รังสีเอ็กซ์ คือการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นของรังสีเอ็กซ์ โดยทั่วไปวัตถุจะแผ่รังสีเอ็กซ์ออกมาจากการแผ่รังสีซิงโครตรอน (เกิดจากอิเล็กตรอนแกว่งตัวเป็นคาบรอบเส้นแรงสนามแม่เหล็ก) จากการแผ่ความร้อนของแก๊สเบาบางที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสี bremsstrahlung) และจากการแผ่ความร้อนของแก๊สหนาแน่นที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสีของวัตถุดำ) [12] คลื่นรังสีเอ็กซ์มักถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์ในช่วงความยาวคลื่นของรังสีเอ็กซ์จึงทำได้โดยอาศัยบัลลูนที่ลอยตัวสูงมาก ๆ หรือจากจรวด หรือจากยานสำรวจอวกาศเท่านั้น แหล่งกำเนิดรังสีเอ็กซ์ที่สำคัญได้แก่ ระบบดาวคู่รังสีเอ็กซ์ พัลซาร์ ซากซูเปอร์โนวา ดาราจักรชนิดรี กระจุกดาราจักร และแกนกลางดาราจักรกัมมันต์[12]

ดาราศาสตร์รังสีแกมมา

ดูบทความหลักที่: ดาราศาสตร์รังสีแกมมา
ดาราศาสตร์รังสีแกมมาเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นที่สั้นที่สุดของสเปกตรัมแม่เหล็กไฟฟ้า เราสามารถสังเกตการณ์รังสีแกมมาโดยตรงได้จากดาวเทียมรอบโลก เช่น หอดูดาวรังสีแกมมาคอมป์ตัน หรือกล้องโทรทรรศน์เชเรนคอฟ กล้องเชเรนคอฟไม่ได้ตรวจจับรังสีแกมมาโดยตรง แต่ตรวจจับแสงวาบจากแสงที่ตามองเห็นอันเกิดจากการที่รังสีแกมมาถูกชั้นบรรยากาศของโลกดูดซับไป[17]
แหล่งกำเนิดรังสีแกมมาโดยมากมาจากการเกิดแสงวาบรังสีแกมมา ซึ่งเป็นรังสีแกมมาที่แผ่ออกจากวัตถุเพียงชั่วไม่กี่มิลลิวินาทีหรืออาจนานหลายพันวินาทีก่อนที่มันจะสลายตัวไป แหล่งกำเนิดรังสีแกมมาชั่วคราวเช่นนี้มีจำนวนกว่า 90% ของแหล่งกำเนิดรังสีแกมมาทั้งหมด มีแหล่งกำเนิดรังสีแกมมาเพียง 10% เท่านั้นที่เป็นแหล่งกำเนิดแบบถาวร ได้แก่ พัลซาร์ ดาวนิวตรอน และวัตถุที่อาจกลายไปเป็นหลุมดำได้ เช่น นิวเคลียสดาราจักรกัมมันต์[12]

การสังเกตการณ์อื่นนอกเหนือจากสเปกตรัมแม่เหล็กไฟฟ้า[แก้]

นอกเหนือจากการสังเกตการณ์ดาราศาสตร์โดยการแผ่รังสีคลื่นแม่เหล็กไฟฟ้าแล้ว ยังมีการสังเกตการณ์อื่น ๆ ที่ทำได้บนโลกเพื่อศึกษาวัตถุในระยะไกลมาก ๆ
ในการศึกษาดาราศาสตร์นิวตริโน นักดาราศาสตร์จะใช้ห้องทดลองใต้ดินพิเศษเช่น SAGE, GALLEX, และ Kamioka II/III เพื่อทำการตรวจจับนิวตริโน ซึ่งเป็นอนุภาคที่เกิดจากดวงอาทิตย์ แต่ก็อาจพบจากซูเปอร์โนวาด้วย[12] เราสามารถตรวจหารังสีคอสมิกซึ่งประกอบด้วยอนุภาคพลังงานสูงได้ขณะที่มันปะทะกับชั้นบรรยากาศของโลก เครื่องมือตรวจจับนิวตริโนในอนาคตอาจมีความสามารถพอจะตรวจจับนิวตริโนที่เกิดจากรังสีคอสมิกในลักษณะนี้ได้[12]
การเฝ้าสังเกตการณ์อีกแบบหนึ่งคือการสังเกตการณ์คลื่นความโน้มถ่วง ตัวอย่างหอสังเกตการณ์ลักษณะนี้ เช่น Laser Interferometer Gravitational Observatory (LIGO) แต่การตรวจหาคลื่นความโน้มถ่วงยังเป็นไปได้ยากอยู่[18]
นอกจากนี้ ยังมีการศึกษาดาราศาสตร์ดาวเคราะห์ ซึ่งทำได้โดยการสังเกตการณ์โดยตรงผ่านยานอวกาศ รวมถึงการเก็บข้อมูลระหว่างที่ยานเดินทางผ่านวัตถุท้องฟ้าต่าง ๆ โดยใช้เซ็นเซอร์ระยะไกล ใช้ยานสำรวจเล็กลงจอดบนวัตถุเป้าหมายเพื่อทำการศึกษาพื้นผิว หรือศึกษาจากตัวอย่างวัตถุที่เก็บมาจากปฏิบัติการอวกาศบางรายการที่สามารถนำชิ้นส่วนตัวอย่างกลับมาทำการวิจัยต่อได้

ดาราศาสตร์เชิงทฤษฎี

ในการศึกษาดาราศาสตร์เชิงทฤษฎี มีการใช้เครื่องมือหลากหลายชนิดรวมถึงแบบจำลองการวิเคราะห์ต่าง ๆ รวมถึงการจำลองแบบคำนวณทางคณิตศาสตร์ในคอมพิวเตอร์ เครื่องมือแต่ละชนิดล้วนมีประโยชน์แตกต่างกันไป แบบจำลองการวิเคราะห์ของกระบวนการจะเหมาะสำหรับใช้ศึกษาถึงสิ่งที่กำลังจะเกิดขึ้นอันสามารถสังเกตได้ ส่วนแบบจำลองคณิตศาสตร์สามารถแสดงถึงการมีอยู่จริงของปรากฏการณ์และผลกระทบต่าง ๆ ที่เราอาจจะมองไม่เห็น.[19][20]
นักดาราศาสตร์ทฤษฎีล้วนกระตือรือร้นที่จะสร้างแบบจำลองทฤษฎีเพื่อระบุถึงสิ่งที่จะเกิดขึ้นต่อไปจากผลสังเกตการณ์ที่ได้รับ เพื่อช่วยให้ผู้สังเกตการณ์สามารถเลือกใช้หรือปฏิเสธแบบจำลองแต่ละชนิดได้ตามที่เหมาะสมกับข้อมูล นักดาราศาสตร์ทฤษฎียังพยายามสร้างหรือปรับปรุงแบบจำลองให้เข้ากับข้อมูลใหม่ ๆ ในกรณีที่เกิดความไม่สอดคล้องกัน ก็มีแนวโน้มที่จะปรับปรุงแบบจำลองเล็กน้อยเพื่อให้เข้ากันกับข้อมูล ในบางกรณีถ้าพบข้อมูลที่ขัดแย้งกับแบบจำลองอย่างมากเมื่อเวลาผ่านไปนาน ๆ ก็อาจจะต้องล้มเลิกแบบจำลองนั้นไปก็ได้
หัวข้อต่าง ๆ ที่นักดาราศาสตร์ทฤษฎีสนใจศึกษาได้แก่ วิวัฒนาการและการเปลี่ยนแปลงของดาวฤกษ์ การก่อตัวของดาราจักร โครงสร้างขนาดใหญ่ของวัตถุในเอกภพ กำเนิดของรังสีคอสมิก ทฤษฎีสัมพัทธภาพทั่วไป และฟิสิกส์จักรวาลวิทยา รวมถึงฟิสิกส์อนุภาคในทางดาราศาสตร์ด้วย การศึกษาฟิสิกส์ดาราศาสตร์เป็นเสมือนเครื่องมือสำคัญที่ใช้ตรวจวัดคุณสมบัติของโครงสร้างขนาดใหญ่ในเอกภพ ที่ซึ่งแรงโน้มถ่วงมีบทบาทสำคัญต่อปรากฏการณ์ทางกายภาพต่าง ๆ และเป็นพื้นฐานของการศึกษาฟิสิกส์หลุมดำ และการศึกษาคลื่นแรงโน้มถ่วง ยังมีทฤษฎีกับแบบจำลองอื่น ๆ อีกซึ่งเป็นที่ยอมรับและร่วมศึกษากันโดยทั่วไป ในจำนวนนี้รวมถึงแบบจำลองแลมบ์ดา-ซีดีเอ็ม ทฤษฎีบิกแบง การพองตัวของจักรวาล สสารมืด และ พลังงานมืด ซึ่งกำลังเป็นหัวข้อสำคัญในการศึกษาดาราศาสตร์ในปัจจุบัน
ตัวอย่างหัวข้อการศึกษาดาราศาสตร์เชิงทฤษฎี มีดังนี้
กระบวนการทางฟิสิกส์เครื่องมือทางดาราศาสตร์แบบจำลองทางทฤษฎีการทำนายปรากฏการณ์
ความโน้มถ่วงกล้องโทรทรรศน์วิทยุวิวัฒนาการของดาวฤกษ์การสิ้นอายุขัยของดาวฤกษ์
นิวเคลียร์ฟิวชั่นกล้องโทรทรรศน์อวกาศฮับเบิลการขยายตัวของเอกภพอายุของเอกภพ
บิกแบงสเปกโทรสโกปีการพองตัวของจักรวาลความแบนของเอกภพ
ความผันผวนควอนตัมดาราศาสตร์รังสีเอ็กซ์ทฤษฎีสัมพัทธภาพทั่วไปหลุมดำที่ใจกลางดาราจักรแอนดรอเมดา
การยุบตัวของความโน้มถ่วงการเกิดของธาตุต่าง ๆ

สาขาวิชาหลักของดาราศาสตร์

ดาราศาสตร์สุริยะ

ภาพถ่ายดวงอาทิตย์ในรังสีอัลตราไวโอเลตจากกล้องโทรทรรศน์อวกาศ TRACE แสดงให้เห็นทรงกลมโฟโตสเฟียร์
ดูบทความหลักที่: ดวงอาทิตย์
ดวงอาทิตย์ เป็นเป้าหมายการศึกษาทางดาราศาสตร์ยอดนิยมแห่งหนึ่ง อยู่ห่างจากโลกไปประมาณ 8 นาทีแสง เป็นดาวฤกษ์ซึ่งอยู่ในแถบลำดับหลักโดยเป็นดาวแคระประเภท G2 V มีอายุประมาณ 4.6 พันล้านปี ดวงอาทิตย์ของเรานี้ไม่นับว่าเป็นดาวแปรแสง แต่มีความเปลี่ยนแปลงในการส่องสว่างอยู่เป็นระยะอันเนื่องจากจากรอบปรากฏของจุดดับบนดวงอาทิตย์ อันเป็นบริเวณที่พื้นผิวดวงอาทิตย์มีอุณหภูมิต่ำกว่าพื้นผิวอื่น ๆ อันเนื่องมาจากผลของความเข้มข้นสนามแม่เหล็ก[21]
ดวงอาทิตย์ส่องแสงสว่างมากขึ้นเรื่อย ๆ ตลอดอายุของมัน นับแต่เข้าสู่แถบลำดับหลักก็ได้ส่องสว่างมากขึ้นถึง 40% แล้ว ความเปลี่ยนแปลงการส่องสว่างของดวงอาทิตย์ตามระยะเวลานี้มีผลกระทบอย่างสำคัญต่อโลกด้วย[22] ตัวอย่างเช่นการเกิดปรากฏการณ์ยุคน้ำแข็งสั้น ๆ ช่วงหนึ่ง (Little Ice Age) ระหว่างช่วงยุคกลาง ก็เชื่อว่าเป็นผลมาจาก Maunder Minimum[23]
พื้นผิวรอบนอกของดวงอาทิตย์ที่เรามองเห็นเรียกว่า โฟโตสเฟียร์ เหนือพื้นผิวนี้เป็นชั้นบาง ๆ เรียกชื่อว่า โครโมสเฟียร์ จากนั้นเป็นชั้นเปลี่ยนผ่านซึ่งมีอุณหภูมิเพิ่มสูงขึ้นอย่างมาก ชั้นนอกสุดมีอุณหภูมิสูงที่สุด เรียกว่า โคโรนา
ใจกลางของดวงอาทิตย์เรียกว่าย่านแกนกลาง เป็นเขตที่มีอุณหภูมิและความดันมากพอจะทำให้เกิดปฏิกิริยานิวเคลียร์ฟิวชั่น เหนือจากย่านแกนกลางเรียกว่าย่านแผ่รังสี (radiation zone) เป็นที่ซึ่งพลาสมาแผ่คลื่นพลังงานออกมาในรูปของรังสี ชั้นนอกออกมาเป็นย่านพาความร้อน (convection zone) ซึ่งสสารแก๊สจะเปลี่ยนพลังงานกลายไปเป็นแก๊ส เชื่อว่าย่านพาความร้อนนี้เป็นกำเนิดของสนามแม่เหล็กที่ทำให้เกิดจุดดับบนดวงอาทิตย์[21]
ลมสุริยะเกิดจากอนุภาคของพลาสมาที่ไหลออกจากดวงอาทิตย์ ซึ่งจะแผ่ออกไปจนกระทั่งถึงแนว heliopause เมื่อลมสุริยะทำปฏิกิริยากับสนามแม่เหล็กของโลก ทำให้เกิดแนวการแผ่รังสีแวนอัลเลนและออโรร่า ในตำแหน่งที่เส้นแรงสนามแม่เหล็กโลกไหลเวียนในชั้นบรรยากาศ[24]

วิทยาศาสตร์ดาวเคราะห์

การหักเหของลมสุริยะจากผลของสนามแม่เหล็กของดาวเคราะห์
ดูบทความหลักที่: วิทยาศาสตร์ดาวเคราะห์
วิทยาศาสตร์ดาวเคราะห์เป็นสาขาวิชาที่ศึกษาเกี่ยวกับองค์ประกอบของดาวเคราะห์ ดวงจันทร์ ดาวเคราะห์แคระ ดาวหาง ดาวเคราะห์น้อย และวัตถุท้องฟ้าอื่น ๆ ที่โคจรรอบดวงอาทิตย์ ตลอดจนถึงบรรดาดาวเคราะห์นอกระบบด้วย วัตถุในระบบสุริยะจะเป็นที่นิยมศึกษาค้นคว้ามากกว่า ในช่วงแรกสามารถสังเกตการณ์ได้ผ่านกล้องโทรทรรศน์ ต่อมาจึงใช้การสังเกตการณ์โดยยานอวกาศมาช่วย การศึกษาสาขานี้ทำให้เราเข้าใจการเกิดและวิวัฒนาการของระบบดาวเคราะห์ได้ดีขึ้น แม้จะมีการค้นพบใหม่ ๆ เกิดขึ้นตลอดเวลาก็ตาม[25]
วัตถุในระบบสุริยะสามารถแบ่งออกได้เป็น ดาวเคราะห์รอบใน แถบดาวเคราะห์น้อย และดาวเคราะห์รอบนอก ในกลุ่มดาวเคราะห์รอบในประกอบด้วย ดาวพุธ ดาวศุกร์ โลก และดาวอังคาร ส่วนในกลุ่มดาวเคราะห์รอบนอกเป็นดาวแก๊สยักษ์ ได้แก่ ดาวพฤหัสบดี ดาวเสาร์ ดาวยูเรนัส ดาวเนปจูน และดาวเคราะห์หินขนาดเล็ก พลูโต[26] พ้นจากดาวเนปจูนไปจะมีแถบไคเปอร์ และกลุ่มเมฆออร์ต ซึ่งแผ่กว้างเป็นระยะทางถึงหนึ่งปีแสง
ดาวเคราะห์ก่อตัวขึ้นจากแผ่นจานฝุ่นที่หมุนวนรอบ ๆ ดวงอาทิตย์ เมื่อผ่านกระบวนการต่าง ๆ นานาเช่น การดึงดูดของแรงโน้มถ่วง การปะทะ การแตกสลาย และการรวมตัวกัน แผ่นจานฝุ่นเหล่านั้นก็ก่อตัวเป็นรูปร่างที่เรียกว่า ดาวเคราะห์ก่อนเกิด (protoplanet) แรงดันการแผ่รังสีของลมสุริยะจะพัดพาเอาสสารที่ไม่สามารถรวมตัวกันติดให้กระจายหายไป คงเหลือแต่ส่วนของดาวเคราะห์ที่มีมวลมากพอจะดึงดูดบรรยากาศชั้นแก๊สของตัวเอาไว้ได้ ดาวเคราะห์ใหม่เหล่านี้ยังมีการดึงดูดและปลดปล่อยสสารในตัวตลอดช่วงเวลาที่ถูกเศษสะเก็ดดาวย่อย ๆ ปะทะตลอดเวลา การปะทะเหล่านี้ทำให้เกิดหลุมบ่อบนพื้นผิวดาวเคราะห์ดั่งเช่นที่ปรากฏบนพื้นผิวดวงจันทร์ ผลจากการปะทะนี้ส่วนหนึ่งอาจทำให้ดาวเคราะห์ก่อนเกิดแตกชิ้นส่วนออกมาและกลายไปเป็นดวงจันทร์ของมันก็ได้[27]
เมื่อดาวเคราะห์เหล่านี้มีมวลมากพอ โดยรวมเอาสสารที่มีความหนาแน่นแบบต่าง ๆ เข้าไว้ด้วยกัน กระบวนการนี้ทำให้ดาวเคราะห์ก่อตัวเป็นดาวแบบต่าง ๆ คือแกนกลางเป็นหิน หรือโลหะ ล้อมรอบด้วยชั้นเปลือก และพื้นผิวภายนอก แกนกลางของดาวเคราะห์อาจเป็นของแข็งหรือของเหลวก็ได้ แกนกลางของดาวเคราะห์บางดวงสามารถสร้างสนามแม่เหล็กของตัวเองขึ้นมาได้ ซึ่งช่วยปกป้องชั้นบรรยากาศของดาวเคราะห์ดวงนั้น ๆ จากผลกระทบของลมสุริยะ[28]
ความร้อนภายในของดาวเคราะห์หรือดวงจันทร์เป็นผลจากการปะทะกันที่ทำให้เกิดโครงร่างและสารกัมมันตรังสี (เช่น ยูเรเนียม ธอเรียม และ 26Al ดาวเคราะห์และดวงจันทร์บางดวงสะสมความร้อนไว้มากพอจะทำให้เกิดกระบวนการทางธรณีวิทยาเช่น ภูเขาไฟและแผ่นดินไหว ส่วนพวกที่สามารถสะสมชั้นบรรยากาศของตัวเองได้ ก็จะมีกระบวนการกัดกร่อนของลมและน้ำ ดาวเคราะห์ที่เล็กกว่าจะเย็นตัวลงเร็วกว่า และปรากฏการณ์ทางธรณีวิทยาจะหยุดลงเว้นแต่หลุมบ่อจากการถูกชนเท่านั้น[29]

ดาราศาสตร์ดาวฤกษ์

เนบิวลาดาวเคราะห์รูปมด ที่แผ่แก๊สออกมาจากศูนย์กลางดาวฤกษ์ที่แตกดับในลักษณะสมมาตร ต่างจากการระเบิดโดยทั่วไป
ดูบทความหลักที่: ดาวฤกษ์
การศึกษาเกี่ยวกับดาวฤกษ์และวิวัฒนาการของดาวฤกษ์เป็นพื้นฐานสำคัญในการทำความเข้าใจกับเอกภพ วิทยาการฟิสิกส์ดาราศาสตร์ของดวงดาวเกิดขึ้นมาจากการสังเกตการณ์และการพยายามสร้างทฤษฎีเพื่อทำความเข้าใจ รวมถึงการสร้างแบบจำลองคอมพิวเตอร์เพื่อศึกษาผลที่เกิดขึ้นภายในดวงดาว
ดาวฤกษ์ถือกำเนิดขึ้นในย่านอวกาศที่มีฝุ่นและแก๊สอยู่หนาแน่น เรียกชื่อว่าเมฆโมเลกุลขนาดยักษ์ เมื่อเกิดภาวะที่ไม่เสถียร ส่วนประกอบของเมฆอาจแตกสลายไปภายใต้แรงโน้มถ่วง และทำให้เกิดเป็นดาวฤกษ์ก่อนเกิดขึ้น บริเวณที่มีความหนาแน่นของแก๊สและฝุ่นสูงมากพอ และร้อนมากพอ จะเกิดปฏิกิริยานิวเคลียร์ฟิวชั่น ซึ่งทำให้เกิดดาวฤกษ์ในแถบลำดับหลักขึ้น[30] ธาตุที่กำเนิดขึ้นในแกนกลางของดาวฤกษ์โดยมากเป็นธาตุที่หนักกว่าไฮโดรเจนและฮีเลียมทั้งสิ้น
คุณลักษณะต่าง ๆ ของดาวฤกษ์ขึ้นอยู่กับมวลเริ่มต้นของดาวฤกษ์นั้น ๆ ดาวฤกษ์ที่มีมวลมากจะมีความส่องสว่างสูง และจะใช้เชื้อเพลิงไฮโดรเจนจากแกนกลางของมันเองไปอย่างรวดเร็ว เมื่อเวลาผ่านไป เชื้อเพลิงไฮโดรเจนเหล่านี้จะค่อย ๆ แปรเปลี่ยนกลายไปเป็นฮีเลียม ดาวฤกษ์ก็จะวิวัฒนาการไป การเกิดฟิวชั่นของฮีเลียมจะต้องใช้อุณหภูมิแกนกลางที่สูงกว่า ดังนั้นดาวฤกษ์นั้นก็จะขยายตัวใหญ่ขึ้น ขณะเดียวกันก็เพิ่มความหนาแน่นแกนกลางของตัวเองด้วย ดาวแดงยักษ์จะมีช่วงอายุที่สั้นก่อนที่เชื้อเพลิงฮีเลียมจะถูกเผาผลาญหมดไป ดาวฤกษ์ที่มีมวลมากกว่าจะผ่านกระบวนการวิวัฒนาการได้มากกว่า โดยที่มีธาตุหนักหลอมรวมอยู่ในตัวเพิ่มมากขึ้น
การสิ้นสุดชะตากรรมของดาวฤกษ์ก็ขึ้นอยู่กับมวลของมันเช่นกัน ดาวฤกษ์ที่มีมวลมากกว่าดวงอาทิตย์ของเรามากกว่า 8 เท่าจะแตกสลายกลายไปเป็นซูเปอร์โนวา ขณะที่ดาวฤกษ์ที่เล็กกว่าจะกลายไปเป็นเนบิวลาดาวเคราะห์ และวิวัฒนาการต่อไปเป็นดาวแคระขาว ซากของซูเปอร์โนวาคือดาวนิวตรอนที่หนาแน่น หรือในกรณีที่ดาวฤกษ์นั้นมีมวลมากกว่าดวงอาทิตย์ของเรากว่า 3 เท่า มันจะกลายไปเป็นหลุมดำ[31] สำหรับดาวฤกษ์ที่เป็นระบบดาวคู่อาจมีวิวัฒนาการที่แตกต่างออกไป เช่นอาจมีการถ่ายเทมวลแก่กันแล้วกลายเป็นดาวแคระขาวแบบคู่ซึ่งสามารถจะกลายไปเป็นซูเปอร์โนวาได้ การเกิดเนบิวลาดาวเคราะห์และซูเปอร์โนวาเป็นการกระจายสสารธาตุออกไปสู่สสารระหว่างดาว หากไม่มีกระบวนการนี้แล้ว ดาวฤกษ์ใหม่ ๆ (และระบบดาวเคราะห์ของมัน) ก็จะก่อตัวขึ้นมาจากเพียงไฮโดรเจนกับฮีเลียมเท่านั้น

ดาราศาสตร์ดาราจักร

การสังเกตการณ์และศึกษาโครงสร้างแขนกังหันของดาราจักรทางช้างเผือก
ดูบทความหลักที่: ดาราศาสตร์ดาราจักร
ระบบสุริยะของเราโคจรอยู่ภายในดาราจักรทางช้างเผือก ซึ่งเป็นดาราจักรชนิดก้นหอยมีคาน และเป็นดาราจักรสมาชิกแห่งหนึ่งในกลุ่มท้องถิ่น ดาราจักรนี้เป็นกลุ่มแก๊ส ฝุ่น ดาวฤกษ์ และวัตถุอื่น ๆ อีกจำนวนมากที่หมุนวนไปรอบกัน โดยมีแรงโน้มถ่วงกระทำต่อกันทำให้ดึงดูดกันไว้ ตำแหน่งของโลกอยู่ที่แขนฝุ่นกังหันด้านนอกข้างหนึ่งของดาราจักร ดังนั้นจึงมีบางส่วนของทางช้างเผือกที่ถูกบังไว้และไม่สามารถมองเห็นได้
ที่ใจกลางของทางช้างเผือกมีลักษณะคล้ายดุมกังหันขนาดใหญ่ ซึ่งเชื่อว่าเป็นที่ตั้งของหลุมดำมวลยวดยิ่ง รอบ ๆ ดุมกังหันเป็นแขนก้นหอยชั้นต้นมี 4 ปลายหมุนอยู่รอบ ๆ แกน เป็นย่านที่มีการเกิดใหม่ของดาวฤกษ์ดำเนินอยู่ มีดาวฤกษ์แบบดารากร 1 ที่อายุเยาว์อยู่ในย่านนี้เป็นจำนวนมาก ส่วนจานของก้นหอยประกอบด้วยทรงกลมฮาโล อันประกอบด้วยดาวฤกษ์แบบดารากร 2 ที่มีอายุมากกว่า ทั้งยังเป็นที่ตั้งของกลุ่มดาวฤกษ์หนาแน่นที่เรียกกันว่า กระจุกดาวทรงกลม[32][33]
ที่ว่างระหว่างดวงดาวมีสสารระหว่างดาวบรรจุอยู่ เป็นย่านที่มีวัตถุต่าง ๆ อยู่อย่างเบาบางมาก บริเวณที่หนาแน่นที่สุดคือเมฆโมเลกุล ซึ่งประกอบด้วยโมเลกุลของไฮโดรเจนและธาตุอื่น ๆ ที่เป็นย่านกำเนิดของดาวฤกษ์ ในช่วงแรกจะมีการก่อตัวเป็นเนบิวลามืดรูปร่างประหลาดก่อน จากนั้นเมื่อมีความหนาแน่นเพิ่มขึ้นมาก ๆ ก็จะเกิดการแตกสลายแล้วก่อตัวใหม่เป็นดาวฤกษ์ก่อนเกิด[34]
เมื่อมีดาวฤกษ์มวลมากปรากฏขึ้นมากเข้า มันจะเปลี่ยนเมฆโมเลกุลให้กลายเป็นบริเวณเอชทูซึ่งเป็นย่านเรืองแสงเต็มไปด้วยแก๊สและพลาสมา ลมดาวฤกษ์กับการระเบิดซูเปอร์โนวาของดาวเหล่านี้จะทำให้กลุ่มเมฆกระจายตัวกันออกไป แล้วเหลือแต่เพียงกลุ่มของดาวฤกษ์จำนวนหนึ่งที่เกาะกลุ่มกันเป็นกระจุกดาวเปิดอายุน้อย ๆ เมื่อเวลาผ่านไปกระจุกดาวเหล่านี้ก็จะค่อย ๆ กระจายห่างกันออกไป แล้วกลายไปเป็นประชากรดาวดวงหนึ่งในทางช้างเผือก
การศึกษาจลนศาสตร์ของมวลสารในทางช้างเผือกและดาราจักรต่าง ๆ ทำให้เราทราบว่า มวลที่มีอยู่ในดาราจักรนั้นแท้จริงมีมากกว่าสิ่งที่เรามองเห็น ทฤษฎีเกี่ยวกับสสารมืดจึงเกิดขึ้นเพื่ออธิบายปรากฏการณ์นี้ แม้ว่าธรรมชาติของสสารมืดยังคงเป็นสิ่งลึกลับไม่มีใครอธิบายได้[35]

ดาราศาสตร์ดาราจักรนอกระบบ

ภาพแสดงวัตถุทรงรีสีน้ำเงินจำนวนมากที่เป็นภาพสะท้อนของดาราจักรแห่งเดียวกัน เป็นผลกระทบจากเลนส์ความโน้มถ่วงที่เกิดจากกระจุกดาราจักรสีเหลืองใกล้ศูนย์กลางของภาพ
การศึกษาวัตถุที่อยู่ในห้วงอวกาศอื่นนอกเหนือจากดาราจักรของเรา เป็นการศึกษาเกี่ยวกับกำเนิดและวิวัฒนาการของดาราจักร การศึกษารูปร่างลักษณะและการจัดประเภทของดาราจักร การสำรวจดาราจักรกัมมันต์ การศึกษาการจัดกลุ่มและกระจุกดาราจักร ซึ่งในหัวข้อหลังนี้มีความสำคัญอย่างยิ่งในการทำความเข้าใจกับโครงสร้างขนาดใหญ่ของจักรวาล
ดาราจักรส่วนใหญ่จะถูกจัดกลุ่มตามรูปร่างลักษณะที่ปรากฏ เข้าตามหลักเกณฑ์ของการจัดประเภทดาราจักร ซึ่งมีกลุ่มใหญ่ ๆ ได้แก่ ดาราจักรชนิดก้นหอย ดาราจักรชนิดรี และดาราจักรไร้รูปแบบ[36]
ลักษณะของดาราจักรคล้ายคลึงกับชื่อประเภทที่กำหนด ดาราจักรชนิดรีจะมีรูปร่างในภาคตัดขวางคล้ายคลึงกับรูปวงรี ดาวฤกษ์จะโคจรไปแบบสุ่มโดยไม่มีทิศทางที่แน่ชัด ดาราจักรประเภทนี้มักไม่ค่อยมีฝุ่นระหว่างดวงดาวหลงเหลือแล้ว ย่านกำเนิดดาวใหม่ก็ไม่มี และดาวฤกษ์ส่วนใหญ่จะมีอายุมาก เรามักพบดาราจักรชนิดรีที่บริเวณใจกลางของกระจุกดาราจักร หรืออาจเกิดขึ้นจากการที่ดาราจักรขนาดใหญ่สองแห่งปะทะแล้วรวมตัวเข้าด้วยกันก็ได้
ดาราจักรชนิดก้นหอยมักมีรูปทรงค่อนข้างแบน เหมือนแผ่นจานหมุน และส่วนใหญ่จะมีดุมหรือมีแกนรูปร่างคล้ายคานที่บริเวณใจกลาง พร้อมกับแขนก้นหอยสว่างแผ่ออกไปเป็นวง แขนก้นหอยนี้เป็นย่านของฝุ่นที่เป็นต้นกำเนิดของดาวฤกษ์ ดาวฤกษ์อายุน้อยมวลมากจะทำให้แขนนี้ส่องสว่างเป็นสีฟ้า ส่วนที่รอบนอกของดาราจักรมักเป็นกลุ่มของดาวฤกษ์อายุมาก ดาราจักรทางช้างเผือกของเราและดาราจักรแอนดรอเมดาก็เป็นดาราจักรชนิดก้นหอย
ดาราจักรไร้รูปแบบมักมีรูปร่างปรากฏไม่แน่ไม่นอน ไม่ใช่ทั้งดาราจักรชนิดรีหรือชนิดก้นหอย ประมาณหนึ่งในสี่ของจำนวนดาราจักรทั้งหมดที่พบเป็นดาราจักรชนิดไร้รูปแบบนี้ รูปร่างอันแปลกประหลาดของดาราจักรมักทำให้เกิดปฏิกิริยาแรงโน้มถ่วงแปลก ๆ ขึ้นด้วย
ดาราจักรกัมมันต์คือดาราจักรที่มีการเปล่งสัญญาณพลังงานจำนวนมากออกมาจากแหล่งกำเนิดอื่นนอกเหนือจากดาวฤกษ์ ฝุ่น และแก๊ส แหล่งพลังงานนี้เป็นย่านเล็ก ๆ แต่หนาแน่นมากซึ่งอยู่ในแกนกลางดาราจักร โดยทั่วไปเชื่อกันว่ามีหลุมดำมวลยวดยิ่งอยู่ที่นั่นซึ่งเปล่งพลังงานรังสีออกมาเมื่อมีวัตถุใด ๆ ตกลงไปในนั้น ดาราจักรวิทยุคือดาราจักรกัมมันต์ชนิดหนึ่งที่ส่องสว่างมากในช่วงสเปกตรัมของคลื่นวิทยุ มันจะเปล่งลอนของแก๊สออกมาเป็นจำนวนมาก ดาราจักรกัมมันต์ที่แผ่รังสีพลังงานสูงออกมาได้แก่ ดาราจักรเซย์เฟิร์ต เควซาร์ และเบลซาร์ เชื่อว่าเควซาร์เป็นวัตถุที่ส่องแสงสว่างมากที่สุดเท่าที่เป็นที่รู้จักในเอกภพ[37]
โครงสร้างขนาดใหญ่ของจักรวาลประกอบด้วยกลุ่มและกระจุกดาราจักรจำนวนมาก โครงสร้างนี้มีการจัดลำดับชั้นโดยที่ระดับชั้นที่ใหญ่ที่สุดคือ มหากระจุกของดาราจักร เหนือกว่านั้นมวลสารจะมีการโยงใยกันในลักษณะของใยเอกภพและกำแพงเอกภพ ส่วนที่ว่างระหว่างนั้นมีแต่สุญญากาศ[38]

จักรวาลวิทยา

ดูบทความหลักที่: จักรวาลวิทยาเชิงกายภาพ
จักรวาลวิทยา (อังกฤษ: cosmology; มาจากคำในภาษากรีกว่า κοσμος "cosmos" หมายถึง เอกภพ และ λογος หมายถึง การศึกษา) เป็นการศึกษาเกี่ยวกับเอกภพทั้งหมดในภาพรวม
การสังเกตการณ์โครงสร้างขนาดใหญ่ของเอกภพ เป็นสาขาวิชาหนึ่งที่เรียกว่า จักรวาลวิทยาเชิงกายภาพ ช่วยให้เรามีความเข้าใจอย่างลึกซึ้งเกี่ยวกับการกำเนิดและวิวัฒนาการของจักรวาล ทฤษฎีที่เป็นที่ยอมรับโดยทั่วไปสำหรับพื้นฐานของจักรวาลวิทยาสมัยใหม่ ได้แก่ ทฤษฎีบิกแบง ซึ่งกล่าวว่าเอกภพของเรากำเนิดมาจากจุดเพียงจุดเดียว หลังจากนั้นจึงขยายตัวขึ้นเป็นเวลากว่า 13.7 พันล้านปีมาแล้ว หลักการของทฤษฎีบิกแบงเริ่มต้นขึ้นตั้งแต่การค้นพบรังสีไมโครเวฟพื้นหลังของจักรวาล ในปี ค.ศ. 1965
ตลอดช่วงเวลาการขยายตัวของเอกภพนี้ เอกภพได้ผ่านขั้นตอนของวิวัฒนาการมามากมายหลายครั้ง ในช่วงแรก ทฤษฎีคาดการณ์ว่าเอกภพน่าจะผ่านช่วงเวลาการพองตัวของจักรวาลที่รวดเร็วมหาศาล ซึ่งเป็นหนึ่งเดียวกันและเสมอกันในทุกทิศทางในสภาวะเริ่มต้น หลังจากนั้น นิวคลีโอซินทีสิสจึงทำให้เกิดธาตุต่าง ๆ ขึ้นมากมายในเอกภพยุคแรก
เมื่อมีอะตอมแรกเกิดขึ้น จึงมีการแผ่รังสีผ่านอวกาศ ปลดปล่อยพลังงานออกมาดั่งที่ทุกวันนี้เรามองเห็นเป็นรังสีไมโครเวฟพื้นหลังของจักรวาล เอกภพขยายตัวผ่านช่วงเวลาของยุคมืดเพราะไม่ค่อยมีแหล่งกำเนิดพลังงานของดาวฤกษ์[39]
เริ่มมีการจัดโครงสร้างลำดับชั้นของสสารขึ้นนับแต่เริ่มมีการเปลี่ยนแปลงความหนาแน่นของสสาร สสารที่รวมกลุ่มกันอยู่เป็นบริเวณหนาแน่นที่สุดกลายไปเป็นกลุ่มเมฆแก๊สและดาวฤกษ์ยุคแรกสุด ดาวฤกษ์มวลมากเหล่านี้เป็นจุดกำเนิดของกระบวนการแตกตัวทางไฟฟ้าซึ่งเชื่อว่าเป็นต้นกำเนิดของธาตุหนักมากมายที่อยู่ในเอกภพยุคเริ่มต้น
ผลจากแรงโน้มถ่วงทำให้มีการดึงดูดรวมกลุ่มกันเกิดเป็นใยเอกภพ มีช่องสุญญากาศเป็นพื้นที่ว่าง หลังจากนั้นโครงสร้างของแก๊สและฝุ่นก็ค่อย ๆ รวมตัวกันเกิดเป็นดาราจักรยุคแรกเริ่ม เมื่อเวลาผ่านไป มันดึงดูดสสารต่าง ๆ เข้ามารวมกันมากขึ้น และมีการจัดกลุ่มโครงสร้างเข้าด้วยกันเป็นกลุ่มและกระจุกดาราจักร ซึ่งเป็นส่วนหนึ่งในโครงสร้างขนาดใหญ่คือมหากระจุกดาราจักร[40]
โครงสร้างพื้นฐานที่สุดของจักรวาลคือการมีอยู่ของสสารมืดและพลังงานมืด ในปัจจุบันเราเชื่อกันว่าทั้งสองสิ่งนี้มีอยู่จริง และเป็นส่วนประกอบถึงกว่า 96% ของความหนาแน่นทั้งหมดของเอกภพ เหตุนี้การศึกษาฟิสิกส์ในยุคใหม่จึงเป็นความพยายามทำความเข้าใจกับองค์ประกอบเหล่านี้[41]

ศาสตร์ที่เกี่ยวข้องกับสาขาอื่น

การศึกษาดาราศาสตร์และฟิสิกส์ดาราศาสตร์ที่ก้าวหน้ามากขึ้น ทำให้มีความเกี่ยวข้องกับวิทยาศาสตร์สาขาอื่นมากยิ่งขึ้น ดังนี้
นอกจากนี้ ยังมีการศึกษาเกี่ยวกับ การวัดตำแหน่งดาว (Astrometry) และกลศาสตร์ท้องฟ้า (Celestial Mechanics) ซึ่งศึกษาเกี่ยวกับตำแหน่งและการเปลี่ยนแปลงตำแหน่งของวัตถุท้องฟ้า การระบุพิกัดและจลนศาสตร์ของวัตถุท้องฟ้า ลักษณะของวงโคจร ความโน้มถ่วง และอื่น ๆ ที่เกี่ยวข้องกับวิชากลศาสตร์และฟิสิกส์

ดาราศาสตร์สมัครเล่น

ดูบทความหลักที่: ดาราศาสตร์สมัครเล่น
นักดาราศาสตร์สมัครเล่นสามารถเฝ้าสังเกตสิ่งที่สนใจเป็นพิเศษ และบ่อยครั้งที่ผลการสังเกตการณ์ของพวกเขากลายเป็นหัวข้อสำคัญทางวิชาการ
ดาราศาสตร์ เป็นสาขาวิชาหนึ่งทางวิทยาศาสตร์ที่บุคคลทั่วไปสามารถมีส่วนร่วมได้อย่างมากที่สุด[42]
นับแต่อดีตมา นักดาราศาสตร์สมัครเล่นได้สังเกตพบวัตถุท้องฟ้าและปรากฏการณ์ทางดาราศาสตร์ที่สำคัญมากมายด้วยเครื่องมือที่พวกเขาสร้างขึ้นมาเอง เป้าหมายในการสังเกตการณ์ของนักดาราศาสตร์สมัครเล่นโดยมากได้แก่ ดวงจันทร์ ดาวเคราะห์ ดาวฤกษ์ ดาวหาง ฝนดาวตก และวัตถุในห้วงอวกาศลึกอีกจำนวนหนึ่งเช่น กระจุกดาว กระจุกดาราจักร หรือเนบิวลา สาขาวิชาย่อยสาขาหนึ่งของดาราศาสตร์สมัครเล่น คือการถ่ายภาพทางดาราศาสตร์ ซึ่งเกี่ยวข้องกับวิธีการถ่ายภาพในท้องฟ้ายามราตรี นักดาราศาสตร์สมัครเล่นส่วนมากจะเจาะจงเฝ้าสังเกตวัตถุท้องฟ้าหรือปรากฏการณ์บางอย่างที่พวกเขาสนใจเป็นพิเศษ[43][44]
ส่วนใหญ่แล้วนักดาราศาสตร์สมัครเล่นจะสังเกตการณ์ดาราศาสตร์ในคลื่นที่ตามองเห็น แต่ก็มีการทดลองเล็ก ๆ อยู่บ้างที่กระทำในช่วงคลื่นอื่นนอกจากคลื่นที่ตามองเห็น เช่นการใช้ฟิลเตอร์แบบอินฟราเรดติดบนกล้องโทรทรรศน์ หรือการใช้กล้องโทรทรรศน์วิทยุ เป็นต้น นักดาราศาสตร์สมัครเล่นผู้บุกเบิกในการสังเกตการณ์ดาราศาสตร์วิทยุ คือ คาร์ล แจนสกี (Karl Jansky) ผู้เริ่มเฝ้าสังเกตท้องฟ้าในช่วงคลื่นวิทยุตั้งแต่คริสต์ทศวรรษ 1930 ยังมีนักดาราศาสตร์สมัครเล่นอีกจำนวนหนึ่งที่ใช้กล้องโทรทรรศน์ประดิษฐ์เองที่บ้าน หรือใช้กล้องโทรทรรศน์วิทยุที่แต่เดิมสร้างมาเพื่องานวิจัยทางดาราศาสตร์ แต่ปัจจุบันได้เปิดให้บุคคลทั่วไปเข้าไปใช้งานได้ด้วย[45][46]
มีบทความทางดาราศาสตร์มากมายที่ส่งมาจากนักดาราศาสตร์สมัครเล่น อันที่จริงแล้ว นี่เป็นหนึ่งในไม่กี่สาขาวิชาทางวิทยาศาสตร์ที่มือสมัครเล่นก็สามารถมีส่วนร่วมหรือเขียนบทความสำคัญ ๆ ขึ้นมาได้ นักดาราศาสตร์สมัครเล่นสามารถตรวจวัดวงโคจรโดยละเอียดของดาวเคราะห์ขนาดเล็กได้ พวกเขาค้นพบดาวหาง และทำการเฝ้าสังเกตดาวแปรแสง ความก้าวหน้าของเทคโนโลยีดิจิตอลทำให้นักดาราศาสตร์สมัครเล่นมีความสามารถในการถ่ายภาพทางดาราศาสตร์ได้ดียิ่งขึ้น และหลาย ๆ ภาพก็เป็นภาพปรากฏการณ์อันสำคัญทางดาราศาสตร์ด้วย[47][48][49]

ปีดาราศาสตร์สากล 2009

ดูบทความหลักที่: ปีดาราศาสตร์สากล
ปี ค.ศ. 2009 เป็นปีที่ครบรอบ 400 ปี นับจากกาลิเลโอได้ประดิษฐ์กล้องโทรทรรศน์ขึ้นเพื่อทำการสังเกตการณ์ทางดาราศาสตร์ และพบหลักฐานยืนยันแนวคิดดวงอาทิตย์เป็นศูนย์กลางจักรวาลที่นำเสนอโดย นิโคเลาส์ โคเปอร์นิคัส ไม่นานก่อนหน้านั้น การค้นพบนี้ถือเป็นการปฏิวัติแนวคิดพื้นฐานเกี่ยวกับจักรวาล และเป็นการบุกเบิกการศึกษาดาราศาสตร์ยุคใหม่โดยอาศัยกล้องโทรทรรศน์ ซึ่งมีความก้าวหน้ายิ่งขึ้นตามที่เทคโนโลยีของกล้องโทรทรรศน์พัฒนาขึ้น
องค์การสหประชาชาติจึงได้ประกาศให้ปี ค.ศ. 2009 เป็นปีดาราศาสตร์สากล โดยได้ประกาศอย่างเป็นทางการเมื่อวันที่ 20 ธันวาคม ค.ศ. 2008 กิจกรรมต่าง ๆ ดำเนินการโดยสหพันธ์ดาราศาสตร์สากล และได้รับการสนับสนุนจากองค์การยูเนสโก ซึ่งเป็นหน่วยงานหนึ่งของสหประชาชาติที่รับผิดชอบงานด้านการศึกษา วิทยาศาสตร์ และวัฒนธรรม มีพิธีเปิดอย่างเป็นทางการที่กรุงปารีส ในวันที่ 15-16 มกราคม ค.ศ. 2009[50]

ดูเพิ่ม

อ้างอิง

  1. กระโดดขึ้น Definition at Answer.com
  2. กระโดดขึ้น Definition at Merriam-Webster.com
  3. กระโดดขึ้น Definition at BrainyQuote.com
  4. กระโดดขึ้น Albrecht Unsöld; Bodo Baschek, W.D. Brewer (translator) (2001). The New Cosmos: An Introduction to Astronomy and Astrophysics. Berlin, New York: Springer. ISBN 3-540-67877-8. 
  5. กระโดดขึ้น George Forbes (1909) (Free e-book from Project Gutenberg). History of Astronomy. London: Watts & Co.. http://www.gutenberg.org/etext/8172.
  6. กระโดดขึ้น Eclipses and the Saros NASA. เก็บข้อมูลเมื่อ 2007-10-28.
  7. กระโดดขึ้น Hipparchus of Rhodes School of Mathematics and Statistics, University of St Andrews, Scotland. เก็บข้อมูลเมื่อ 2007-10-28.
  8. กระโดดขึ้น Arthur Berry (1961). A Short History of Astronomy From Earliest Times Through the Nineteenth Century. New York: Dover Publications, Inc. 
  9. กระโดดขึ้น Michael Hoskin, ed. (1999). The Cambridge Concise History of Astronomy. Cambridge University Press. ISBN 0-521-57600-8. 
  10. กระโดดขึ้น Arthur Berry (1961). A Short History of Astronomy From Earliest Times Through the Nineteenth Century. New York: Dover Publications, Inc..
  11. กระโดดขึ้น "Electromagnetic Spectrum". NASA. เก็บข้อมูลเมื่อ 2006-09-08.
  12. กระโดดขึ้นไป: 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 A. N. Cox, editor (2000). Allen's Astrophysical Quantities. New York: Springer-Verlag. ISBN 0-387-98746-0.
  13. กระโดดขึ้นไป: 13.0 13.1 F. H. Shu (1982). The Physical .......Universe. Mill Valley, California: University Science Books. ISBN 0-935702-05-9.
  14. กระโดดขึ้นไป: 14.0 14.1 P. Moore (1997). Philip's Atlas of the Universe. Great Britain: George Philis Limited. ISBN 0-540-07465-9.
  15. กระโดดขึ้น Staff (2003-09-11). "Why infrared astronomy is a hot topic", ESA. เก็บข้อมูลเมื่อ 11 สิงหาคม 2008.
  16. กระโดดขึ้น "Infrared Spectroscopy - An Overview", NASA/IPAC. เก็บข้อมูลเมื่อ 11 สิงหาคม 2008.
  17. กระโดดขึ้น Penston, Margaret J. (2002-08-14). "The electromagnetic spectrum". Particle Physics and Astronomy Research Council. เก็บข้อมูลเมื่อ 2006-08-17.
  18. กระโดดขึ้น G. A. Tammann, F. K. Thielemann, D. Trautmann (2003). "Opening new windows in observing the Universe". Europhysics News. เก็บข้อมูลเมื่อ 2006-08-22.
  19. กระโดดขึ้น H. Roth, A Slowly Contracting or Expanding Fluid Sphere and its Stability, Phys. Rev. (39, p;525–529, 1932)
  20. กระโดดขึ้น A.S. Eddington, Internal Constitution of the Stars
  21. กระโดดขึ้นไป: 21.0 21.1 Johansson, Sverker (2003-07-27). "The Solar FAQ". Talk.Origins Archive. เก็บข้อมูลเมื่อ 2006-08-11.
  22. กระโดดขึ้น Lerner & K. Lee Lerner, Brenda Wilmoth (2006). "Environmental issues : essential primary sources.". Thomson Gale. เก็บข้อมูลเมื่อ 2006-09-11.
  23. กระโดดขึ้น Pogge, Richard W. (1997). "The Once & Future Sun" (lecture notes). New Vistas in Astronomy. เก็บข้อมูลเมื่อ 2005-12-07.
  24. กระโดดขึ้น D. P. Stern, M. Peredo (2004-09-28). "The Exploration of the Earth's Magnetosphere". NASA. เก็บข้อมูลเมื่อ 2006-08-22.
  25. กระโดดขึ้น J. F. Bell III, B. A. Campbell, M. S. Robinson (2004). Remote Sensing for the Earth Sciences: Manual of Remote Sensing (3rd ed.). John Wiley & Sons. http://marswatch.tn.cornell.edu/rsm.html. เก็บข้อมูลเมื่อ 2006-08-23.
  26. กระโดดขึ้น E. Grayzeck, D. R. Williams (2006-05-11). "Lunar and Planetary Science". NASA. เก็บข้อมูลเมื่อ 2006-08-21.
  27. กระโดดขึ้น Roberge, Aki (1997-05-05). "Planetary Formation and Our Solar System". Carnegie Institute of Washington—Department of Terrestrial Magnetism. เก็บข้อมูลเมื่อ 2006-08-11.
  28. กระโดดขึ้น Roberge, Aki (1998-04-21). "The Planets After Formation". Department of Terrestrial Magnetism. เก็บข้อมูลเมื่อ 2006-08-23.
  29. กระโดดขึ้น J.K. Beatty, C.C. Petersen, A. Chaikin, ed. (1999). The New Solar System (4th ed.). Cambridge press. ISBN 0-521-64587-5.
  30. กระโดดขึ้น "Stellar Evolution & Death". NASA Observatorium. เก็บข้อมูลเมื่อ 2006-06-08.
  31. กระโดดขึ้น Jean Audouze, Guy Israel, ed. (1994). The Cambridge Atlas of Astronomy (3rd ed.). Cambridge University Press. ISBN 0-521-43438-6.
  32. กระโดดขึ้น Ott, Thomas (2006-08-24). "The Galactic Centre". Max-Planck-Institut für extraterrestrische Physik. เก็บข้อมูลเมื่อ 2006-09-08.
  33. กระโดดขึ้น Faulkner, Danny R. (1993). "The Role Of Stellar Population Types In The Discussion Of Stellar Evolution". CRS Quarterly 30 (1) : 174–180. http://www.creationresearch.org/crsq/articles/30/30_1/StellarPop.html. เก็บข้อมูลเมื่อ 8 September 2006.
  34. กระโดดขึ้น Hanes, Dave (2006-08-24). "Star Formation; The Interstellar Medium". Queen's University. Retrieved on 2006-09-08.
  35. กระโดดขึ้น Van den Bergh, Sidney (1999). "The Early History of Dark Matter". Publications of the Astronomy Society of the Pacific 111: 657–660. doi:10.1086/316369. 
  36. กระโดดขึ้น Keel, Bill (2006-08-01). "Galaxy Classification". University of Alabama. เก็บข้อมูลเมื่อ 2006-09-08.
  37. กระโดดขึ้น "Active Galaxies and Quasars". NASA. เก็บข้อมูลเมื่อ 2006-09-08.
  38. กระโดดขึ้น Zeilik, Michael (2002). Astronomy: The Evolving Universe (8th ed.). Wiley. ISBN 0-521-80090-0.
  39. กระโดดขึ้น Hinshaw, Gary (2006-07-13). "Cosmology 101: The Study of the Universe". NASA WMAP. เก็บข้อมูลเมื่อ 2006-08-10.
  40. กระโดดขึ้น "Galaxy Clusters and Large-Scale Structure". University of Cambridge. เก็บข้อมูลเมื่อ 2006-09-08.
  41. กระโดดขึ้น Preuss, Paul. "Dark Energy Fills the Cosmos". U.S. Department of Energy, Berkeley Lab. เก็บข้อมูลเมื่อ 2006-09-08.
  42. กระโดดขึ้น Mims III, Forrest M. (1999). "Amateur Science--Strong Tradition, Bright Future". Science 284 (5411): 55–56. doi:10.1126/science.284.5411.55. สืบค้นเมื่อ 2008-12-06. "Astronomy has traditionally been among the most fertile fields for serious amateurs [...]" 
  43. กระโดดขึ้น "The Americal Meteor Society". สืบค้นเมื่อ 2006-08-24. 
  44. กระโดดขึ้น Lodriguss, Jerry. "Catching the Light: Astrophotography". สืบค้นเมื่อ 2006-08-24. 
  45. กระโดดขึ้น F. Ghigo (2006-02-07). "Karl Jansky and the Discovery of Cosmic Radio Waves". National Radio Astronomy Observatory. สืบค้นเมื่อ 2006-08-24. 
  46. กระโดดขึ้น "Cambridge Amateur Radio Astronomers". สืบค้นเมื่อ 2006-08-24. 
  47. กระโดดขึ้น "The International Occultation Timing Association". สืบค้นเมื่อ 2006-08-24. 
  48. กระโดดขึ้น "Edgar Wilson Award". Harvard-Smithsonian Center for Astrophysics. สืบค้นเมื่อ 2006-08-24. 
  49. กระโดดขึ้น "American Association of Variable Star Observers". AAVSO. สืบค้นเมื่อ 2006-08-24. 
  50. กระโดดขึ้น "International Year Of Astronomy 2009". Oneindia (Dec 30, 2008). เก็บข้อมูลเมื่อ 9 มกราคม 2009.

แหล่งข้อมูลอื่น